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Abstract. An original iterative procedure has been developed to obtain energy spectrum 
of neutral and charged excitons (positive and negative trions) in spherical semiconductor 
quantum dots (QD) imbedded into a dielectric material. Numerical calculations are made 
using the effective mass approximation and Hartree-Fock method. A combined effect of 
heterointerface polarization (image force potential) and finite band-off-sets on the energy 
spectrum of excitons and trions in QDs is considered for the first time. It is shown that 
binding energies of excitons and trions in such QDs can be substantially larger than those 
in bulk semiconductors due to spatial and “dielectric” confinement effects. 
 
Keywords: semiconductor quantum dot, quantum size effect, image force potential, 
excitons, trions, energy spectrum, binding energy. 
 
Manuscript received 30.11.05; accepted for publication 15.12.05. 
 

 
 
 
1. Introduction 

The neutral or charged excitons (trions) are quasi-
particles composed of two or three interacting charge 
carriers, e.g. of an electron and a hole (neutral exciton), 
of two electrons and a hole (a negative trion Х-) or of 
two holes and one electron (a positive trion Х+). In 
semiconductors, the existence of three-particle 
complexes bound by the Coulomb interaction was 
predicted in 1958 by Lampert [1]. As was shown in that 
work, in bulk semiconductors these charged electron-
hole states are energetically favourable as compared to a 
three-particle state "neutral exciton plus free charge 
carrier". However, their binding energy turned out to be 
very small (usually, less than 1 meV) and for this reason 
the experimental investigation of these states in bulk 
semiconductors is substantially complicated. Never-
theless, the trions were observed for example in bulk 
silicon [2] and germanium [3]. Very interesting is the 
question about exciton and trion states in semiconductor 
systems with spatial confinement when partial or total 
quantization of electron and/or hole energy spectra 
occurs. As was shown in a number of experimental and 
theoretical works on quantum wells and quantum wires 
(e.g., see [4-19], binding energies of exciton and trion 
states increase substantially in such structures. For 
example, in accordance with theoretical calculations in 
the case of semiconductor quantum wells [20] the trion 
binding energy should be an order of magnitude greater 
than that in bulk semiconductors. In reality, this fact has 

been confirmed experimentally [21]. Spatially confined 
trions were observed in the structures with QDs as well. 
Of special interest are the investigations of photo-
luminescence spectra of single QDs [22, 23] where lines 
caused by trion transitions are clearly revealed. 

In addition to spatial confinement in many 
semiconductor nanostructures the effect of dielectric 
confinement due to large dielectric mismatch with 
environment plays very important role, too [see, e.g. 24-
27]. Unfortunately, in a majority of previous works this 
effect has been considered theoretically only in the 
approximation of infinitely high barriers, when wave 
functions of electron and hole confined states turn to 
zero at the interfaces. It is clear that with a decrease of 
characteristic size of nanocrystals such approximation 
becomes too bad for the finite band-off-sets in real 
semiconductor-dielectric nanostructures.  

In this work, we consider theoretically the exciton 
and trion states that can be formed and radiate in 
semiconductor QDs located in a dielectric matrix. Both 
finite band-off-sets and dielectric confinement effects 
are taken into account as in our previous works [9, 28] 
on quantum wells and quantum wires. We exploit here a 
simplified solid state model based on the effective mass 
approximation. Moreover, only heavy-hole subband 
forming the lowest in energy confined hole states in QDs 
has been taken into account in our calculations. 
Additional effects which can arise due to subband 
mixing, anisotropy, magnetic and electric fields, etc. will 
be considered in future.  
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If an electron and a hole move simultaneously in QD, 
then the energy of the ground radiative electron-hole 
(exciton) transition in such a QD can be written as 
follows:  

X g e h XE E E E S= + + − , (1) 

where Eg is the bandgap width of bulk material 
containing QDs, Ee and Eh are the lowest single-particle 
confinement energies in these QDs, respectively, SX is 
the exciton binding energy caused by the Coulomb 
interaction between an electron and a hole in QDs.  

If three carriers (two electrons and a hole or two 
holes and an electron) move simultaneously in a QD, 
then the energy of the ground radiative electron-hole 
transition in such a system may be written as  

XX X
E E S− −= −  (2) 

for a negative trion case and 

XX X
E E S+ += −  (3) 

for a positive trion case. In Eqs (2) and (3) the values 
−

XS −  and − XS + are the energy shifts of the ground 
radiative trion transitions with respect to the energy of 
the ground exciton transition. If these values are 
negative, the corresponding trion states are energetically 
favourable as compared to the states of a three-particle 
system in the form of “free” exciton and “free” charge 
carrier. In other words, the values − −X

S  and − +X
S  are 

the trion “binding” energy with respect to the virtual 
state of non-interacting exciton and charge carrier.  

2. Model and results 

The trion states, where the pair Coulomb interaction 
between all the quasi-particles of which the trion is 
composed plays a substantial role, in a first appro-
ximation may be built of single-particle states of a model 
Hamiltonian for a spherically-symmetric semiconductor 
QD in a dielectric matrix. In this case, the conduction 
and valence band-off-sets at the "semiconductor QD – 
dielectric matrix" heterointerface form rectangular 
potential energy gaps both for electrons and holes inside 
the QD region. The corresponding coordinate 
dependences of the electron and hole potential energies 
Uc and Uv caused by the band-off-sets can be written as 

( )
( )

0, if
( )

, ifc v
e h

r R
U r

U r R
<=  >

, (4) 

where R is the QD radius, Ue(h) are the band-off-set 
values.  

In the case when the QD material dielectric constant 
ε1 differs from that of the ambient ε2, the polarization of 
the heterointerface by a charged point particle forms an 
additional image forces potential field. The potential 
energy of a particle in this field (self-action energy) can 

be expressed using the Green function G (x, x') of the 
following Poisson equation for the point positive unit 
charge:  

)(
π4

),( xxxx ′−−=′∆ δ
ε

Gx , (5) 

where ε = ε1 if r < R and ε = ε2 if r > R, х' is the 
coordinate of a point unit charge that forms the 
electrostatic potential G (x, x') at the point x. The 
solution of this equation can be conveniently written in a 
form of the following expansion in spherical harmonics 
Ylm [29]:  
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In the case, when both the charge and the observation 
point are located inside the QD, i.e., when both Rr <′  
and Rr <  then  
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where the radial coordinate r> is the greatest of the r and 
'r  coordinates, while r< is the least one. In the case 

when both the charge and the observation point are 
located beyond the QD in the barrier region, i.e., when 
both Rr >'  and Rr > , the corresponding expression has 
the form of  
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Finally, when the charge and the observation point 
are at different sides of the heterointerface  

( ) ( )
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where 1 2( ) / 2ε ε ε= + . Taking into account the well-
known expression  
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 (10) 

it is clear that the first term in the right-hand sides of Eqs 
(7) - (9) corresponds to the usual Coulomb field of a 
point positive unit charge in the medium with the 
effective dielectric constant ε1, ε2, and 1 2( ) / 2ε ε ε= + , 
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respectively. The second term in the right-hand sides of 
Eqs (7)-(9) is the image forces field component that 
arises due to the QD heterointerface polarization by the 
point charge.  

The self-action potential energy of the charge e 
located at the point x is equal to 2/),()( 2 xxGerU s ′= , 
where the prime at the Green function indicates only the 
part of this function that is associated with the second 
term in Eqs (7) and (8), i.e. with the self-image field. 
Thus, the potential energy of a charged particle in the 
image force field induced by this particle itself (the self-
action potential energy) can be expressed by the 
following formulas:  

( ) ( )
22

1 2

1 1 20

1
2 1

l

s
l

e l rU r
R l l R

ε ε
ε ε ε

∞

=

− +  =   + +∑ ,      if r < R  

(11) 
and 

( ) ( )
( )2 12
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2 1

l

s
l

e l RU r
R l l r

ε ε
ε ε ε

∞ +

=

−  = −   + +∑ , if r > R.

 (12) 

The classical point charge electrostatic potential and, 
hence, the self-action potential energy has a nonphysi-
cal diverging behavior near the heterointerface 

2
1 2 1,2 1 2( ) ~ ( ) /(4 ( ))sU r e zε ε ε ε ε− + , where | |z R r= −  

is the distance of the charged particle from the 
heterointerface. However, in real systems a transient 
layer between the QD and the barrier region always 
exists, therefore, the electrostatic potential is in fact 
continuous [30]. The continuity of the electrostatic 
potential at the heterointerface and in the transient layer 
also follows from the spatial dispersion account (i.e. 
account of a nonlocal character of interaction between 
the charge and the induced field). Rigorous calculations 
of the self-action potential energy in the transient layer is 
a rather difficult problem in this case. However, if we 
are interested only in one-particle self-energy shifts, then 
it is not so necessary to know the exact solution of this 
difficult problem in the transient region due to the fact 
that contributions to self-energy shifts from the internal 
part of the thin transient layer (i.e., that belonging to the 
QD region) and external part (belonging to the barrier 
region) will practically compensate each other and will 
give, as a result, only a small correction to the total 
single-particle energy. Therefore, to a first 
approximation, the exact total single-particle potential 
energies Uc(v)+Us within the thin transient layer (of the 
order of interatomic distance) around the heterointerface 
can be simply approximated by a polynomial over the 
distance z = (R− r). In particular, we used in our 
calculations a cubic polynomial.  

For example, Fig. 1 illustrates the energy diagram for 
electrons and holes in the case of a Si-SiO2 QD of 
1.5 nm in diameter. Thin solid lines correspond to the 
ordinary potential energy behaviour in the absence of the 
image forces field, while thick solid lines show the 

potential energy gaps, when self-action is taken into 
account. The self-action potential energy shift Us(r) at 
the center of the QD takes the value  

( )
2

1 2

1 2
0

2s
eU
R

ε ε
ε ε
−

=  . (13) 

The smaller is the QD, the greater is the shift of the 
potential gap bottom caused by the QD heterointerface 
polarization. Therefore, by finding the energy levels of 
single-particle states in a semiconductor QD within a 
dielectric matrix, it makes sense to account for this shift 
already from the very beginning, i.e., calculate electron 
(hole) confinement energies in rectangular spherical 
potential gaps of the depth ( ) ( ) (0)e h e h sU U U= −  rather 
than Ue(h). Respectively, in the final expression for the 
total energy of the electron-hole transition, these shifts 
of the bottoms of the potential gaps for an electron and a 
hole can be easily taken into account by adding simply 
2Us(0). Thus, the total single-particle potential energies 
in the Schroedinger equation can be written in the form 
of ( ) ( ) ( )c v s U r U r+ , where ( ) ( ) 0c vU r =  for r < R and 

( ) ( )( )c v e hU r U=  for r > R, while ( ) ( )s sU r U r=  for 

r > R and  ( ) ( ) ( )0s s sU r U r U= −  for r < R. With 
respect to the bottoms of potential gaps changed by self-
action, the energy spectrum of single-particle states ,iE α  
is determined by the single-particle Schroedinger 
equations ,

ˆ ( ) ( )i i
i i i iH Eα α αΨ = Ψr r , where  

2

( )
ˆ ∆ ( ) ( ) .

2 ( )i i c v i s i
i i

H U r U r
m r

= − + +  (14) 

Here, the index i serves to denote an electron (e) or a 
hole (h), mi(ri) is the effective mass that takes the values 
mi1 in the QD region and mi2 in the barrier region. The 
wave functions i

αΨ  of single-particle states localized in 

 
 

Fig. 1. Schematic potential energy diagram for electrons 
and holes in the case of Si-SiO2 quantum dot of 1.5 nm in 
diameter. Dotted lines show the energies of confined 
electron and hole s-states in the rectangular spherically-
symmetrical potential gaps with the bottoms shown by 
dashed lines. 
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such potential gaps can be found in the form of an 
expansion in wave functions ( ),i k irϕ  of a model 
Hamiltonian describing a confined movement of the 
particles in rectangular spherically-symmetrical potential 
gaps ( ) ( )c vU r  (the bottoms of these gaps are shown in 
Fig. 1 by dashed lines): 

( ) ( ), ,
i

i i k i k i
k

C
α

α ϕΨ = ∑r r .  (15) 

To abbreviate the notation, the index k is used here to 
denote the standard set of quantum numbers {n, l, m} for 
a spherically-symmetrical system, the quantum numbers 
α = 0, 1, 2 ... characterize energy levels of single-particle 
states in a QD when self-action potential energy (third 
term in the right-hand side of expression (14)) is taken 
into account, too.  

The wave functions )(, iki rϕ have the following 
form:  

( )

, , ,

,
,

,

( ) ( ) ( )

( )
( ) ( ) ,
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i nlm i i nl i l i nl i

l i nl
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j k R
r R k r Y

k R

ϕ θ

θ η
η

= − +


+ − Ω


r

 (16) 

where θ(x) is a step-function, Ni,nl is the normalization 
coefficient, 1/ 2

, 1 ,[2 ] /i nl i i nlk m E= , , 2[2 (i nl i im Uη = −  
1/ 2

, )] /i nlE− , jl and kl  are the usual and modified 
spherical Bessel functions. The corresponding single-
particle confinement energies ,i nlE  in such rectangular 
spherically-symmetrical potential gaps can be found 
from the equation  

( )
( )

( )
( )

1 1 2 1

1 2 2 1
0l i l ii i i i

i l i i l i i i

j k R k Rk R R m m
l

m j k R m k R m m
ηη

η
+ + −

− − =  . (17) 

The energy levels of electron and hole confined s-
states (i.e., with the quantum number l = 0) in Si-SiO2 
QD of 1.5 nm in diameter are shown in Fig. 1 by dotted 
lines. 

By determining the coefficients ,i kCα  and energies 

,iE α as a result of expansion (15) substitution into Eq. 
(14) and fulfilment of corresponding integrations, we 
completely solve the problem of finding the basic set of 
single-particle states i

αΨ  in semiconductor QD inside 
this dielectric matrix. These states will be used below for 
a description of exciton and trion states in spherical QDs 
in the presence of the image forces field. The energies Ei 
(I = e,h) in the right-hand part of the expression (1) are 
expressed therewith as  

,0(0)i s iE U E= + . (18) 

The Hamiltonian of a two-particle system, which 
determines the energies of exciton transitions in such 
QD, has the following form:  

( )
( )

2 2
ˆ 2 0

2 ( ) 2 ( )

( ) ( ) ( ) ( ) ,
ˆ ˆ2 0 , ,

X g s e h
e e h h

s e s h c e v h eh e h

g s e h eh e h

H E U
m r m r

U r U r U r U r U

E U H H U

= + − ∆ − ∆ +

+ + + + + =

= + + + +

( )

r r

( ) r r

 (19) 

where the term Ueh(re,rh) = − e2 G (re,rh) allows for both 
direct Coulomb interaction between an electron and a 
hole and indirect (i.e., interaction of an electron with the 
image of a hole and a hole with the image of an 
electron).  

We will seek the wave function of the ground state of 
exciton in the form of a product of the "exciton" single-
particle electron and hole wave functions ( )X

e eΨ r  and 

( )X
h hΨ r :  

( ) ( ) ( ), X X
X e h e e h hΦ = Ψ Ψr r r r , (20) 

where ( )X
e eΨ r  and ( )X

h hΨ r , in turn, can be 
conveniently presented in the form of an expansion in 
basal single-particle wave functions i

αΨ  (15):  

( ) ( )X i
i i i iBα

α
α

Ψ = Ψ∑r r . (21) 

In this case, the Schroedinger equation for the ground 
state of exciton in a QD can be written in the form of a 
coupled equations for the electron and hole wave 
functions X

iΨ :  

( )

( )

21ˆ , ( ) ( )
2

e

X X
e eh e h h h h e e

X X
e e

H U d

E

 + Ψ Ψ =  

= Ψ

∫ r r r r r

r
 

and (22) 

( )

( )

21ˆ , ( ) ( )
2

h

X X
h eh e h e e e h e

X X
h

H U d

E

 + Ψ Ψ =  

= Ψ

∫ r r r r r

re

 

The system of equations (22) is solved self-
consistently in the way analogous to Hartree-Fock 
technique. As a first approximation by integrating in Eqs 
(22), the wave functions (15) of electron and hole 
ground states are taken: ( ) ( ),0

0
X i
i i iα=Ψ = Ψr r . Further, 

in the basis of the functions ( )i
iαΨ r  (i.e., using the 

expansion (21)), we write Eq. (22) in a matrix form, 
diagonalize the matrix obtained, and find new wave 
functions of an electron and a hole ( ),1

,0
X
i iΨ r  of the 

type (21). They correspond to the lowest one-particle 
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energy states ,1
,0
X
iE  at a first iteration (the upper index 1 

means that these functions and energies are obtained as a 
result of a first iteration, the lower index 0 that they 
correspond to the smallest eigenvalue of the 
diagonalized matrix, i.e., to the ground state). With these 
new wave-functions, we repeat integrations in (22), 
build new matrices and so on. The iterative procedure is 
continued until the relation of the energy increment 
obtained in the course of the last iteration to the total 
value of the energy obtained up to this moment becomes 
smaller than a preset accuracy. As a rule, to have the 
accuracy of the order of 10−6, three or four iterations are 
enough. As a result, we obtain "exciton" single-particle 
energies 

e
XE  and 

h
XE  in the exciton ground state. The 

energy of the system transition from a non-excited state 
into the exciton ground state (or vice versa) is expressed 
in this case as EX  2 (0)

e h

X X
g sE U E E= + + +  (or 

e h
X X

X gE E E E= + + , if similarly to (18) we set 

(0)
i
X X

s iE U E= + ). By calculating the "exciton" single-

particle energies 
i
XE  and real single-particle energies Ei 

(18) as well as comparing the above expression for the 
exciton transition energy with the expression (1), we are 
able thus to determine the binding energy SX of an 
exciton in a QD with finite band-off-sets and a polarized 
heterointerface:  

( )X X
X e h e hS E E E E= + − + . (23) 

Fig. 2 shows calculated dependences of the exciton 
transition energy (a) and exciton binding energy (b) on 
the QD diameter for the cases of silicon QDs and those 
of some AIIBVI materials located in the SiO2 matrix. 
Within the considered range of QD diameters, the 
behaviour of the curves in Fig. 2a can be described as 

n
X gE E Ad −= + , where d is the QD diameter, and the 

parameter n takes the following values: 1.461 (Si), 1.582 
(CdS), 1.271 (CdSe), and 1.273 (CdTe). Noteworthy is 
that in the infinite barrier height approximation these 
dependences should behave practically like d−2. As seen 
from Fig. 2b, due to the effects of quantum confinement 
and dielectric enhancement, the binding energy of 
excitons in QD of small size (~1 – 2 nm) can reach very 
large values (from several tenths to several electron-
volts). A small difference between the exciton binding 
energies in Si, CdSe and CdTe QDs (in Fig. 2b 
corresponding curves are shown for simplicity by one 
solid line) is explained by the fact that dielectric 
constants of these materials are close to each other (ε 
~10–12). The curve for the CdS QD in Fig. 2b (dashed 
line) lie much lower because of the smaller value of the 
dielectric constant in CdS material (ε  ~ 5.4).  
 

 
 
Fig. 2. Energies of the ground exciton transition in 
semiconductor QDs located in SiO2 matrix as functions of QD 
diameter (a). Exciton energy shifts in the exciton ground state 
(exciton binding energies taken with the negative sign) in 
semiconductor QDs located in SiO2 matrix as functions of QD 
diameter (b). Solid curve corresponds to the cases of Si, CdSe 
and CdTe QDs, dashed one to CdS QD. 
 
 

The described above technique may be also 
generalized to describe the trion states. As an example, 
let us consider the ground state of a negative trion in 
QD. Since in this case the electron subsystem should be 
a spin singlet, the wave function of a negative trion in a 
QD can be found in the form of a symmetrized product 

of "trion" single-particle functions X
i

−

Ψ :  

( ) ( ) ( )

( ) ( ) ( )

1 2 , 1 , 2

, 2 , 1

1, ,
2

,

X
X X

h e e

X X X
e e h h

α β

α β

− −
−

− − −

Φ = Ψ Ψ +

+Ψ Ψ Ψ

r r r r r

r r r
 (24) 

where, analogously to the case of an exciton, "trion" 
single-particle functions will be presented in the form of 
an expansion in basic single-particle functions )( i

i rαΨ   
(15):  

( ) ( )

( ) ( )

, ( ) ,

.

X e
e i e i

X h
h h h h

A

A

λ
γ λ

λ

λ
λ

λ

χ γ
−

−

Ψ = Ψ

Ψ = Ψ

∑

∑

r r

r r
. (25) 

In the expressions (24) and (25), the indices α, β and 
γ are the spin variables taking the values +1/2 and −1/2, 

( )χ γ  is an electron spin function. Although the spin 
coordinate will not be taken into account further in an 
explicit form, for a more accurate and rapid iteration it is 
worth distinguishing functions of electrons with different 
spins as it is made in the spin-unrestricted Hartree-Fock 
method [31, 32]. For such a form of the wave 
function ( )1 2, , hX −Φ r r r , the Schroedinger equations 
for a negative trion in a QD may be written in the form 
of the following system of equations:  
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Fig. 3. Trion energy shifts in the trion ground state (trion 
binding energy taken with the negative sign) with respect 
to the energy of the state formed by non-interacting exciton 
and charge carrier in Si-SiO2 QD as a function of the QD 
diameter. Solid curves correspond to the case when the 
effect of interface polarization is not taken into account, 
while dashed ones are obtained with such an account. 
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where Uee(r1,r2) = e2 G (r1,r2) includes both direct and 
indirect Coulomb interaction between two electrons in a 

trion. The single-particle wave functions ,
X
e γ

−

Ψ  and 

X
h

−

Ψ in the ground state of trion and the corresponding 

energies 
i

XE
−

 can be determined using the iteration 
procedure analogous to that described in the case of an 
exciton. The energy of the system transition from a 
non-excited state, when only one charge carrier is 
present in the QD (electron in the case of a negative 
trion) into the ground state of trion (or vice versa) is 

expressed as 2 (0) (2 ) X
e h
X

g s eX
E E U E E E

−
−

−= + + − +  

(or (2 ) X
e h
X

g eX
E E E E E

−
−

−= + − + , if we introduce a 

designation (0)
i
X X

s iE U E
− −

= + ). Then, it follows from 
the definition (2) that the energy shift of such a trion 
transition with respect to the exciton transition energy is 
expressed by the formula  

(2 )X X X X
e e h e hX

S E E E E E
− −

− = + + − + .  (27) 

Similar expressions can be also obtained for the case 
of a positively charged trion.  

Fig. 3 shows the dependence on the silicon QD 
diameter of the trion transition energy shift ( )XS − +−  
with respect to the exciton transition energy. As seen 
from this figure, if the effect of the heterointerface 
polarization is not taken into account, then the trion 
states in QD are more energetically favourable than that 
of an exciton, and with the QD size reducing their 

binding energy with respect to the exciton state increases 
and can reach the values of 10 – 20 meV in QD of a very 
small size (~1 – 2 nm). These values by factors of tens 
exceed trion binding energy in the case of bulk silicon 
[2]. The effect of the heterointerface polarization in Si-
SiO2 QDs considerably decreases the binding energy of 
trion states with respect to the exciton state in a QD of 
several nanometers in size. When the QD size decreases, 
the trion transition energy becomes even greater than 
that of the exciton, i.e., the trion state in principle is less 
energetically favourable in a small Si-SiO2 QD than the 
state in the form of a separate exciton and a charge 
carrier (e.g., those separated by tunneling into adjacent 
QDs). 

3. Conclusion  

Thus, in the present work by using the Hartree-Fock 
technique we have calculated the energy of the ground 
radiative exciton and trion transitions in semiconductor 
QDs located in a dielectric matrix. It has been shown 
that the trion transition energy can be either less or 
greater than the exciton transition energy depending on 
the physical parameters of the system under 
consideration.  

For example, in the case of a Si-SiO2 QD the barrier 
for holes due to the valence band-off-set is higher than 
the barrier for electrons (~ 4.6 and ~ 3.2 еV, 
respectively). Besides, the effective mass of a heavy hole 
in silicon (~0.5 m0) is greater than that of an electron 
(~ 0.25 m0). This makes hole states to be more localized 
in a QD than those of electrons. Therefore, the more 
effective repulsion of two holes in the case of a 
positively charged trion results in greater energies of the 
trion transitions in Si-SiO2 QDs than in the case of a 
negatively charged trion.  
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It has been shown that if we do not take into account 
the image forces field that arises due to a substantial 
mismatch in the low-frequency dielectric constants of 
silicon (ε1 ~ 11.7) and silicon dioxide (ε2 ~ 2.1), the 
energy of the radiative transition in the case of a 
negatively charged trion is less than that of the exciton 
transition. This means that the effective attractive 
electron-hole interaction in such a trion exceeds the 
effective repulsive electron-electron interaction, and 
with the QD size decreasing, the trion state is becoming 
energetically ever more favourable as compared to the 
state of non-interacting exciton and electron. As far as a 
positively charged trion concerned, in the considered QD 
size range the trion transition energy is greater than that 
of the exciton, and with size reduction, the positive 
difference between the trion and exciton transition 
energies increases. Taking into account the polarization 
of the heterointerfaces causes a shift of the trion 
transition energies towards the short-wave region. 
Moreover, for small QD sizes (< 2 nm), the transition 
energies of negatively charged trions become greater 
than the exciton transition energies (like to the case of 
positively charged trions within the whole range of 
considered QD sizes).  
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