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Abstract. We study a re-entrant transition in an exciton bistable system under the 
influence of multiplicative noise. The re-entrant behavior is predictable for specific 
values of the system control parameter when increasing the multiplicative noise intensity. 
The system of Wannier-Mott excitons exhibits bistable ↔ monostable transitions in a 
window of intermediate amplitudes of the multiplicative noise intensity demonstrating its 
destructive and constructive role. 
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1. Introduction 

Systems with a definite number of competing states of 
local stability play a leading role in the contemporary 
analysis of various physical phenomena and their 
possible applications. In a growing number of cases such 
situations occur in open systems, i.e., systems that 
require continual fluxes of the energy or matter. Our 
focus will be on the dynamics of solid-state Wannier-
Mott excitons with bistable behavior. Due to an 
excitonic resonance, an intrinsic absorption optical 
bistability may occur in a narrow spectral range beyond 
the critical light intensity. An external feedback in the 
form of optical resonator is not necessary for such 
bistability. 

It has been found experimentally that resonatorless 
optical bistability near the exciton resonance takes place 
at rather small exciton concentrations ( 315

ex cm10~ −n ) 
and the intensity of incident radiation 1 kW/cm2 at room 
temperatures [1, 2]. It is important that optical nonlinear 
effects occur during resonance formation of excitons at a 
significantly lower incident-light intensity as compared 
with excitation of isolated atoms. The exciton 
nonlinearities leading to this bistability has been 
investigated theoretically in early papers [3, 4]. It has 
been found that the concentration of excitons induced by 
resonance light of a sufficiently large intensity can be an 
ambiguous function of that intensity, if the width and 
position of the absorption line depends on the 
concentration. In fact, the increase of external radiation 
leads to growth of the density of exciton states and 
raising exciton-exciton collision role. In this case, the 
response of the system depends on the number of 
excitons induced by external radiation. Thus, an increase 

of the light intensity induces the change of optical 
characteristics in semiconductors [5]. The optical device 
based on such semiconductors has not been already 
designed, but the latter phenomenon has a fundamental 
meaning in the study of non-equilibrium systems. 

Hence, for the correct description of the position and 
linewidth of the exciton, it is impossible to neglect 
many-body effects [6]. The exciton-density dependence 
of the exciton resonance position has been intensely 
investigated by spectrally resolved four-wave mixing [7, 
8]. Furthermore, a sophisticated case of the energy 
renormalization of the biexciton resonance in ZnSe 
quantum wells takes place [9]. These examples indicate 
the importance of taking into consideration the 
dependence of the resonance frequency on the 
concentration of excitations in various systems. 

The processes of creation and transformation of an 
ordered structure far from equilibrium are similar to 
phase transitions in an equilibrium system. Noise 
induced phenomena associated with kinetic transitions 
have special place in non-equilibrium processes [10] and 
have been actively discussed [11-13]. It has become 
apparent that even small noise can induce qualitative 
changes in the system far from thermal equilibrium [14]. 

In this work, the optical bistable system near the 
excitonic resonance is studied in the presence of the 
multiplicative noise. We predict the appearance of noise 
induced re-entrant transitions in the narrow region of 
light intensities. The bifurcation diagrams showing that 
region were obtained by numerically calculating the 
extremum of the probability for the stationary density of 
excitons in bistable semiconductor. 

The paper is organized as follows. In the next 
Section, we briefly discuss the basic equations for the 
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exciton bistable system under some multiplicative noise. 
The analysis of its stochastic behavior and re-entrant 
transitions are presented in the third Section. Finally, 
several conclusions have been given in Sec.IV. 

2. Basic equations 

Transport equations for the laser radiation with the 
intensity I(z) and quasi-particle concentration n(z,t) can 
be written in the form 

( ) ( )  ,   = zIn
dz
dI ωα− , (1) 
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where ( )n,ωα  and D  are the light absorption and 
quasi-particle diffusion coefficients, respectively; τ is the 
quasi-particle lifetime. The surface 0=z  of a 
semiconductor plate is illuminated with a light beam of 
the intensity 0I . In equation (2), we will confine 
ourselves to a linear function for the recombination 
concentration of excitons. 

The frequency dependence of the light-absorption 
coefficient ( )ωα  for the resonance light absorption is 
given by 

( )
12

 0
–1   = ,

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

Δ
′

+
ω
ωωαωα rn . (3) 

Collective interactions (interactions of excitons with 
lattice or with each other, exchange interactions, etc.) in 
the exciton system at high excitation levels cause the 
resonance frequency rω ′  to become a function of the 
excitation concentration that decreases with n: 

( )   = ann rr −′ ωω . This behavior is due to effective 
attraction of excitons. The magnitude of the light-
absorption coefficient (3) at fixed frequencies depends 
essentially on the resonance frequency. In the case of 
excitons, ωΔ  and an are the width and shift (in the 
linear approximation of the quasi-particle concentration) 
of the exciton level rω . The concentration-induced blue 
shift and the broadening of the exciton absorption line 
increase absorption in the relation (3). 

Assuming that the diffusion length exceeds the plate 
thickness and introducing the averaged light intensity, 
we obtain a nonlinear concentration balance equation for 
a system of Wannier-Mott excitons 

{ } .),(exp[1 11
0

−− −−−= τωα nlnlI
dt
dn  (4) 

The macroscopic equation (4) in the frequency 
region rωω ≤  has from one to three solutions 
depending on the value of the control parameter. In the 

last case, this leads to a hysteresis in the quasi-particle 
distribution that is determined by the laser-radiation 
intensity. This results from a bell shape (pseudo-
Lorentzian form) of the absorption factor as a function 
of the exciton concentration in a certain frequency 
region. For this reason, the phenomena of resonatorless 
optical bistability takes place in the exciton frequency 
region. An internal feedback in the system provides a 
balance condition between the processes of exciton 
generation and recombination. Toyozawa [3] examined 
similar nonlinear situation for the system with threshold 
behavior of absorption. 

Having a fixed incident light frequency, we can 
change over to dimensionless variables in Eq. (4): 
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with τθ / = t , l  =  0αλ , ( )( )2r /=  ωωω Δ−Ω , 
( )ωωη −ran/= , ( ) lIa ωωτβ −r0/ = . By mechanical 

analogy Eq. (5) describes an over-damped oscillatory 
system, while the magnitude )(ηf  corresponds to 
external forces. 

3. Re-entrant transitions 

Let us examine the changes in the states of the system 
induced by fluctuations of the light intensity. For the 
system of excitons, the light intensity is an external 
parameter that appears in Eq. (5) as a multiplicative 
factor. We shall describe the random breakdown of light 
coherence by the following stochastic process 
( ) ( ),tt σξββ +=  where the external noise )(tξ  is 

characterized by very rapid fluctuations (Gaussian white 
noise) to compare with the characteristic evolution time 
of system. This means that the one-dimensional variable 
η  undergoes the influence of a random external 
perturbation. The intrinsic fluctuations of the system are 
not considered, since they do not induce transitions [10]. 
These fluctuations (both additive and multiplicative) 
only shift the region of multiple quasi-particle 
distribution towards a major value of the control 
parameter. 

In terms of generalized functions, the Gaussian white 
noise is a derivative of the Wiener process. Therefore, 
Eq. (5) is a stochastic differential equation in the sense 
of Stratonovich associated with the Fokker-Plank 
equation that defines the evolution of the transition 
probability ( )θηθη ′′, / ,p  [10] 
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Fig. 1. “Stochastic force” plotted versus phase coordinates for 
different values of noise amplitude σ. The line with circles 
corresponds to σ2 = 0, and another one (with squares) to σ2 = 
= 0.09. 
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The states of system can be adequately described by 
the stationary probability density p(η), if not to consider 
the microscopic transients of a nonlinear system with 
respect to an external noise. The stationary solution of 
the homogeneous Fokker-Plank equation (6) 
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corresponds to the diffusive stochastic process. Here, N 
is a constant to be determined from the the normalization 
condition 

( )∫ =
b

s dp
0

1  ηη . (8) 

The limits of integration are given by physical 
restrictions of the problem, i.e., by variation of the 
exciton concentration from zero to that at which the 
Bose condensation takes place. 

The solution (7) can be written by analogy with the 
well-known canonical distribution of equilibrium 
thermodynamics 

)/)(2exp()( 2σηη VNps −= . (9) 

Here )(ηV  is the effective potential. The random 
diffusion process )(θη  is ergodic, since the probability 
density (9) is normalized. It follows from the fact that 
the product ηη dps )(  is the time over which the 
arbitrary trajectory of the diffusion process approaches 
the point η  at infinity. Thus, the maxima of the 
probability density correspond to stable stationary states 
in which the system dwells relatively long, while the 
minima correspond to unstable stationary states that are 
passed very quickly. The macroscopic stationary states 
of the system can be found from extremum conditions of 
the stationary probability density [10]. Noise induced 
transitions appear when the density function changes 
from unimodal into bimodal distribution. Thus, for 
examination of long-time system behavior, it is 
sufficient to study the extremes of the effective potential 
( )ηV , since the neighborhood of potential minima of the 
2σ  order gives the basic contribution in the stationary 

probability density. A numerical analysis is carried out 
for the model of illuminated CdS-like semiconductor 
with the following parameters: =τ 10−3 s, 
=a 2.5·10−7 cm3/s, =Ω 100, =λ 0.055. The level of the 

light flux intensity is 1020 photon/cm2·s. 
Let us consider the behavior of the system for 

supercritical values of the control parameter 64.18=cβ . 
In the absence of external multiplicative noise, the 

system is characterized by one stationary state near the 
zero value of η  (Fig. 1, curve marked as circles), which 
corresponds to the shifted resonance frequency. The 
inset shows the function near the zero line. But the 
growth of fluctuations of the incident light, which are 
characterized by the noise amplitude σ  or dispersion 

=2σ 0.09, leads to the appearance of bistability in the 
concentration dependence (Fig. 1, curve marked as 
squares). Hence, the given qualitative reconfiguration of 
the dynamical system regime with resonance absorption 
of light should be treated as an external noise induced 
bistability of exciton states below the critical intensity of 
the incident radiation. By the analogy with the motion of 
particle in the classic potential )(ηV , this mean that 
small external noises transform an infinite motion of 
particle into finite motion in a certain interval. On the 
other hand, for supercritical values of the controlling 
parameter β , the external noise shifts the region of 
bistability towards the higher values of the incident light 
intensity (suppression of bistability by noise). As an 
example, we illustrate this behavior in Fig. 2. 

Hence, external white multiplicative noise has a 
contradictory role in the open nonlinear system. It leads 
to enlargement of the system bistability region and its 
shift. Noise may lead to a bistable behavior in systems 
where this phenomenon cannot take place without noise. 
On the other hand, it can suppress the states that are 
already present in the deterministic system. Such 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2006. V. 9, N 1. P. 88-92. 

 

 

© 2006, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

91 

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

- 0 . 4
- 0 . 3

- 0 . 2
- 0 . 1

0 . 0
0 . 1

 

f(
η)
, f
 s (
η)

η

h1 h2 h3
h

s

1

h

s

2

h

s

3

 
 
Fig. 2. Comparison of deterministic f(η) and stochastic f s(η) 
“forces” for β = 20, Ω = 25. The amplitude of the 
multiplicative noise intensity is σ = 7. 
 

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5

1 8 . 5 0
1 8 . 5 5

1 8 . 6 0
1 8 . 6 5

1 8 . 7 0

 

β

σ
 

 
Fig. 3. Phase diagram of the system (dependence of the critical 
value of the nondimensional laser radiation intensity β versus the 
amplitude of the multiplicative noise intensity σ for various 
values of Ω. The value Ω = 50 corresponds to the lines with 
circles, Ω = 100 to the lines with triangles and Ω = 150 to the 
lines with squares. 

combination of destructive and constructive nature of 
external multiplicative noise may lead to unusual 
behavior of the system at the re-entrant transition. In this 
case, the noise-induced transition brings the system to 
bimodality; while the re-entrant transition takes places at 
a higher value of the multiplicative noise intensity, 
making the system to be unimodal again. The system 
exhibits a suppression bistability, followed by the re-
entrant transition back to bistability, both induced by 
multiplicative noise. In other words, the system 
undergoes a suppression of bistability in a narrow 
window of intermediate intensities. It will be shown that 
our prediction takes place. For this purpose, we will 
estimate the critical value of the light intensity by 
changing the amplitude of the multiplicative noise 

intensity. In order to illustrate the behavior of an optical 
bistable system being under excitonic resonance, we 
have numerically examined the extremum of the 
effective potential (9). 

As one can see from Fig. 3, the cβ  (critical value of 
incident radiation intensity) depends on the parameter Ω 
which is the ratio between the value of detuning at the 
excitonic resonance and excitonic line width. In the 
deterministic case ( 0=σ ), an increase of the parameter 
Ω  requires higher intensities of light β  for bistability 
to take place in the exciton system. Probability 
distributions are bimodal for points above the curves and 
unimodal below. The growing multiplicative noise 
increases the critical value of the laser radiation intensity 
at first, but than decreases it abruptly at larger values of 
σ . At the higher then the critical value of the light 
intensity, a crossover takes place from the bistable to 
monostable region and back to bistable while increasing 
the noise amplitude. The latter re-entrant phenomenon is 
accompanied with the shift of the transition line. 

Note that the described phenomena resemble the 
appearance of stochastic resonance since constructive 
manifestation of noise is optimal for the intermediate 
value of the multiplicative noise amplitude. Previous 
order resumes for a larger value of the noise intensity 
amplitude showing its destructive role. It can be easily 
seen from Fig. 4 that the latter behavior takes place for a 
narrow window of values of the control parameter β . 
The stochastic system exhibits re-entrant behavior as a 
function of multiplicative Gaussian white noise. Besides, 
an increase of noise induces bistability for smaller values 
of laser irradiation than in the deterministic case. As 
discussed in paper [15], nonlinear systems can undergo 
noise induced re-entrant transitions also under the 
influence of colored noises. 
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Fig. 4. Phase diagram of the system here is the dependence of 
the critical value for the nondimensional laser radiation 
intensity β versus the amplitude of the multiplicative noise 
intensity σ. The dotted lines marks the region of the re-entrant 
transition. 
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Quasi-white noise approach uses assumption that the 
width of the noise spectrum (~σ ) is by far larger than 
the inverse time of passing to a steady regime. Another 
simplification used in this approach is neglecting the 
internal structure of a laser beam. Qualitative results of 
the research doesn’t change, if take into account the 
described structure. 

4. Conclusions 

In this paper, the influence of multiplicative noise on a 
system of Wannier-Mott excitons have been examined. 
We have presented the evidence of the re-entrant 
transition in the bistable model on excitonic resonance. 
The re-entrant transition is induced by parametric noise 
of the laser radiation intensity, which demonstrates the 
dual role of noise amplitude as a control parameter. It 
has been found that even a sufficiently small external 
multiplicative noise shifts the region of bistability 
towards the higher values of the incident light intensity, 
in other words, noise suppresses the bistability. But the 
further increase of noise induces the bistability of the 
stochastic system for smaller values of laser irradiation 
than in the deterministic case. 

We have numerically constructed the transition line 
diagrams, i.e., the boundaries of the bimodal-unimodal 
transitions. The form and the position of the lines on the 
plane { σβ , } depends on the ratio between the value of 
detuning at the excitonic resonance and excitonic line 
width. The state diagrams show that the system passes 
the monostable region in a window of intermediate 
amplitudes of the multiplicative noise intensity for the 
specific value of β . The transition is re-entrant, i.e., 
bistability is resumed at a higher noise intensity. An 
immediate cause of re-entrant behavior is the resonance 
origin of the excitonic absorption mechanism in 
semiconductors. Thus, one can expect the appearance of 
the latter phenomenon in other similar systems with the 
resonance absorption. 
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