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Abstract. Optical properties of free electrons in the conduction band of metal are 
considered. It is shown that the conventional Drude theory does not take shielding of the 
external electrical field by mobile electrons into account. This shielding is conditioned by 
the polarization of these electrons. Offered is the way of taking this polarization into 
consideration when calculating the reflectivity of metal. It is shown that the account of 
polarization results in agreement between the theoretical results and experimental data. 
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1. Introduction 

The skin effect influences on reflection and absorption 
of light by metals [1]. It influences upon the optical 
behavior of noble and other metals with the high 
electrical conductivity (such as Cu, Al). In this case, the 
depth of the skin layer δ and the length of free path of an 
electron l meet the condition δ < l. If the electrical 
conductivity is enough small and the condition δ > l 
takes place, the optical behavior of metals is studied 
similarly to that of dielectrics and semiconductors. And 
in the spectral region that corresponds to light absorption 
by mobile electrons, the Drude theory is traditionally 
used [2-5]. 

The latter case (δ > l) is studied in this work. In the 
second section, it is shown that the conventional Drude 
theory neglects the shielding of the external electrical 
field (that is the polarization) by mobile electrons. The 
way to take this shielding into consideration is given in 
the third section. Light reflection is reviewed with taking 
the polarization into account in the fourth section. The 
comparison of the theoretical and experimental data is 
performed in the fifth and the sixth sections.  

2. The permittivity in the Drude model 

The optical properties of metals are dictated by its 
permittivity ε. The Drude model is traditionally used to 
determine ε in the considered range of light frequencies 
ω [2-5]. In this model, free electrons (limited by the 

conduction band) are supposed to be neutralized by a 
positive background of a crystal lattice that has the 
permittivity 0ε  independent of frequency [1, 4, 5]. Thus, 
under action of the external electrical field D applied to 
metal there is an electric current with the density j = enυ, 
where e is the charge of an electron, υ is its speed, n is 
the concentration of mobile electrons. The external field 
D(ω)exp(iωt) (where D(ω) is the amplitude of the field) 
creates the current of these electrons with the amplitude 
of the electric current density j(ω). The linear response 
of this current to the external field D is described by the 
expression 

j(ω)=s(ω)D(ω)
0ε

1  ,                 (1) 

where 

)1(
)(

2

ωτ+
τ

=ω
im

ne
s                      (2) 

is the electrical conductivity of the Drude model, τ = 1/γ 
is the relaxation time of the electron momentum, m is its 
effective mass.  

The permittivity of the kind of  

)(4)( 0s ω
ω
π

+ε=ωε s
i

               (3) 

is traditionally used in the consideration of optical 
behavior of metals [2–5]. Eqs (2), (3) give the per-
mittivity εs, its real part εs1 = Re εs and its imaginary one 
εs2 = Im εs as follows 
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where 
m
en

p
0

2
2 4

ε
π

=ω  is the plasma frequency squared. 

The Drude model can be applied only in the 
frequency region that is essentially larger than ωp and 
cannot be used under decreased frequencies. It takes 
place because the shielding of the external field by 
mobile electrons in the Drude model is absent. This 
shielding starts to act when 1−ω= ppt  [6]. Therefore, at 

times ptt ≈  (that is at light frequencies pω≈ω ) the 
conduction electrons are exposed to the internal field E. 
This field is E ≠ D / 0ε . That is, the internal field E is 
not equal to the field D / 0ε  that is the external field in 
relation to the conduction electrons. The polarization 
vector 

P = (D–ε0E)/(4π)  

gives the difference E from 0εD  [4, 6–11]. This 
difference is not taken into account in the obtained 
expressions (4)–(6) for the permittivity εs.  

3. Inclusion of polarization into the permittivity 

The current density j can be expressed both via the 
internal electrical field E and the field D/ε0 [6, 7, 9–11] 

j(ω) = σ(ω)E(ω) = s(ω)D/ε0.              (7) 

The electrical conductivity s determines the 
response of current to the external (in relation to the 
subsystem of conduction electrons of the metal) field 
D/ε0. And the electrical conductivity σ gives the 
response of current to the internal field E. Therefore, s is 
named the external electrical conductivity, while σ is 
named as the internal one [9–11]. The difference 
between σ and s in Exp. (7) appears when the 
polarization P differs from zero. The charges that do not 
participate in optical transitions in the studied range of 
frequencies create the background contribution ε0 
independent of frequency to the permittivity [1, 4, 5, 8]. 
So, the expression for permittivity of metal ε(ω) can be 
written as follows 

ε(ω)
ω
π

+ε=
i
4

0 σ(ω).                   (8) 

Eq. (8) stems from D(ω) = ε(ω)E(ω) that is the 
definition of permittivity of matter ε(ω), and P = (D–
ε0E)/(4π) for the polarization vector P [4, 6–11]. But this 
definition requires σ being in Eq. (8) instead of s [6–11]. 
From this definition of ε(ω) and Eqs (7), (8) we deduce 

σ(ω) = s(ω)ε(ω)
0

1
ε

.                    (9) 

And the formulas (8), (9) give  
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Substituting Eq. (10) into (8), we obtain  

)(41
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The precise expression for permittivity ε (ω) (11) 
(in which the polarization is taken into account) differs 
essentially from the approximated expression for the 
permittivity εs (3) (in which the polarization is not taken 
into account and which is used by the conventional 
theory of optical behavior of metals). Developing the 
right side in the expression (11) as series in s (ω), we see 
that ε (ω) coincides with εs (3) only when s (ω) is 
sufficiently small. Expression (10) allows us, under 
consideration of the optical behavior of metals (which 
are determined by the electrical conductivity σ), to use 
the electrical conductivity s (obtained without regard for 
the polarization). 

4. Inclusion of polarization into the optical behavior 
of metals 

Substituting the expression (2) in the formula (11), we 
have 
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Exp. (12) gives the real part ε=ε Im1  and the imaginary 
part ε−=ε Im2  as 
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Making expansion of the right side of expressions 
(12)–(14) in series by degrees of (ωp/ω)2, we will be 
convinced in the validity of the ratio  
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Hence, the permittivity )(ωεs (in which the 
polarization is not taken into account) can be applicable 
only in the approximation of large frequencies 

2ω >> 2
pω .  

Let's consider optical constants of metal as a 
function of the light wavelength ωπ=λ /2 c , where c is 
the speed of light. Let's designate the plasma wavelength 
as pp c ωπ=λ /2 , τπ=λ c21 , pz λλ= /1 . In new 
notations, we have from formulas (5), (6) 
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And from the expressions (13), (14), we have  
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The reflectivity of metal for normal light incidence 
is [3] 
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is the refraction index, and ε1, ε2 are given by the 
formulas (17), (18). Exp. (19) considers the polarization. 
Without regard for polarization, the light reflectivity of 
metal is 
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and 1sε , 2sε  are given by the formulas (15), (16). 
 

5. Comparison of the theory with experiment  

Let’s try to match the obtained theoretical results with 
experimental data for the normal light reflectivity of 
metal.  

In Figs 1-3, the experimental values of normal light 
incidence reflectivity for polycrystalline metals Ni [12], 
Fe [13], Nb [14] are given by circles. In these figures, 
the dotted line represents results of the calculation of the 
reflectivity by using the formula (22), which corresponds 
to the conventional Drude theory and not takes the 
polarization into account. In the same figures, the 
continuous line gives results of the calculation for 
normal light incidence reflectivity in accord with the 
formula (19), which accounts for polarization. 

The values of the physical quantities n, 0ε , 
ξ = m/m0 (where m0 is the electron mass), used in the 
calculation, are given in the table. The value n was 
determined as the product of the metal valence (equal to 
2) by the concentration of atoms of metal (taken from 
tab. 1.5 from [4]). 

 
Table. 
 
 Metal n⋅10–22, cm–3 0ε  ξ 

 Ni 18.28 0.85 1.4 
 Fe 17.00 0.95 2.5 
 Nb 11.12 0.45 1.8 
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Fig. 1. The dependence of the normal light incidence reflectivity of metal R at the wavelength λ for Ni. The circles are 
experimental values, the dotted line is the calculation by the formula (22) and the continuous line is the calculation by the 
formula (19). 
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Fig. 2. The dependence of normal light incidence reflectivity of metal R at the wavelength λ for Fe. The designations are the 
same as in Fig. 1. 
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Fig. 3. The dependence of normal light incidence reflectivity of metal R at the wavelength λ for Nb. The designations are the 
same as in Fig. 1. 
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The values of 0ε  and ξ were fitting parameters. 

The calculation was performed at 1210−=τ s. Within the 
range pλ>λ , the variation τ was within 1412 1010 −− − s 
and did not influence the results of calculating the 
reflectivity by the formula (19). 

6. Discussion  

It can be seen from figures that the reflectivity for 
normal light incidence computed with and without the 
allowance for polarization coincides only at small λ (that 
is, in the approximation of large frequencies ω>>ωp) as 
it should be. As λ increases (it can be seen from figures) 
the result of computation of the normal light incidence 
reflectivity by the formula (22) (which uses the 
conventional Drude theory and does not consider 
polarization) does not correspond to experimental data at 
all and differs from them dramatically. However, the 
result of computation for the normal light incidence 
reflectivity by the formula (19) (which allows for 
polarization) gives the coincidence with experimental 
data at this λ. 

Thus, the abovementioned way of taking 
polarization into account gives a good agreement 
between the theoretical results and experimental data. 
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