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1. Introduction 

The principle of multibeam interferometry of light for 
plane parallel plate developed by Fabry-Perot [1] have 
been widely used for solving a large number of scientific 
and applied problems and have been discussed in many 
textbooks [2-5]. Neveretheless, a number of new 
regularities in the scope of the problem were recently 
found. It was shown that Fabry-Perot interferometry is 
still actual for non-destructive control of optical para-
meters of micro- and nano-size layers [6-8]. 

Recently, the so-called method of envelope 
functions as tangential to contours of amplitude spectra 
of light reflection and transmission by a single-layer 
Fabry-Perot structures [10-19] was developed. So, for 
example, on the basis of the method the approach for 
determining the variation parameters in thickness and 
influence of spectral distribution of light and light 
absorption [9-15] was grounded. The envelope function 
method was used for grounding the new approach for 
determination of the instrumental characteristics of 
interference bands [16, 17] and for reconstruction of the 
phase of a reflected wave by single-layer films [16, 17, 
19]. In other our papers [20-26], we developed the 
envelope function method for arbitrary ratio between the 
indices of refraction  3,2,1n  of  three media. 

In the paper, authors generalized the basic 
principles of application of the envelope function 
method to the data analysis in amplitude-phase 
spectroscopy of light interference for single-layer 
structures of Fabry-Perot type (SLSFP) in the case of 
normal incidence of a beam onto the interfaces for 
transparent and absorptive structures. A method for 

obtaining the analytical expression for energetic 
coefficients ( ) minmax,,TR  and phase minmax,φ  is 
proposed.  

2. General relations  

The SLSFP of a thickness d  and of the complex 
refraction index 222

~ χ−= inn  is bounded by the semi-
infinite top transparent media with refraction index 1n  
(interface 12) and bottom (transparent or absorbing) 
media with refraction index 3

~n  (interface 23). In the 
absorbing layer, the phase change of wave is equal to 

2
~4~ n

d
λ
π

=δ . It is well known also that taking into 

account the multibeam interference the complex 
amplitude values of light reflection r~  and transmission 
t~  by SLSFP are determined from  

( )
( )δ−+

δ−+
= ~exp~~1

~exp~~
~
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irr
irr
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itt
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           (1) 

where 23,12
~r  and 23,12

~t  are the well-known amplitude 
Fresnel's coefficients [2] for the single interfaces with 
subscripts 12 and 23. The resonant dispersion of the 
media is modelled by one-oscillator function of 
permittivity [27] 

ε~ =
ωτ+ω−ω

ωπ
+ε

i22
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Here 0ε  is the background permittivity, Dπ4 is the 
oscillator force of transition into electron state with 
resonant frequency 0ω , τ  is the damping factor.  

According to Eq. (1), the energy coefficient of 
reflection R  and transmission T, and the tangent of 
phases φtan  and Φtan  of light are defined as follows  
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where ( )δ−=Ω ~Imexp , ∗⋅= 23,1223,1223,12
~~ ttT , 

( )23,1223,1223,12 exp~ φσ= ir , ( )δ−φ±φ=±
~Re2312F .  

Then expression for energetic coefficients of 
reflection and transmission are defined as [21, 24-26]:  
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are the envelope functions of Fabry-Perot spectra.  

3. Discussion  

1. SLSFP with resonant dispersion (2). In many 
practical problems, medium with refraction 1n  is air or 

vacuum and 11 =n . For a free layer with resonant 
dispersion of )(~ ωε , the calculated spectra )(ωR , )(ωT  

)(ωφ , )(ωΦ  and their envelope functions 
( ) minmax,,, φTR  are shown in Fig. 2. In the region of 
resonant absorption near the resonant frequency 0ω , it is 
possible to separate a frequency interval with width 

pω∆ , which is bounded by an interval with significant 
absorption where 0→Ω . Inside the interval 

minmax RR ≈ , and the spectra are formed as if the light 
wave is reflected from a semi-infinite medium with 
resonant dispersion (2) [21, 24-26]. The distance 
between envelope functions minmax RRR −=∆  and 

minmax TTT −=∆  are equal to 

R∆
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The absorption level increases with approaching to 
the resonant frequency 0ω , and the value 0→∆R  
because of damping factor approaching to null 0→Ω . 
Near the resonant region beyond the interval pω∆ , the 
functions (Fig. 1b) 

( )
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are the envelope functions of the phase spectrum of 
reflection. It is problematic to apply the envelope 
function method (Fig. 1b) to describe the phase spectrum 

)(ωΦ  for light transmitted through the layer.  
At the arbitrary frequency, we have the following 

expression:  
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The ratios 
min

max

RR
RR

−
−

 and  
min

max

TT
TT

−
−

 vary from 0 to 

+∞ , and at the frequencies 2,1ω  from both side of 
extreme contour peak the ratios are equal to 1. Hence, 
coefficients for reflected and transmitted light at the 
frequencies 2,1ω  equal (Fig. 2) 

[ ]minmax2
1

RRR +=Σ   and  [ ]minmax2
1

TTT +=Σ .      (11) 

It is the approach (11) that enables to ground the 
validity of interferogram apparatus characteristic deter-
mination [16, 17]. The extreme contour width ω∆  under 

the condition (11) equals δ∆=ω∆
dn

c

2

0

2
, where δ∆  is 

the width contour extreme in phase units (phase distance 
between frequencies 2,1ω  on both sides from its peak).  
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Fig. 2. Calculated spectra of )(ωR , )(ωT  in the resonant 

region and contours )(ωΣR  and )(ωΣT . 
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Fig. 1. Calculated spectra of )(ωR , )(ωT  in the resonant 

region and their envelope functions ( ) minmax,,TR  (a) and )(ωφ , 

)(ωΦ (b).  

 
The phase width δ∆  equals 

min

2
ω∆
ω∆

π=δ∆ , where 

minω∆  is the distance between the frequencies on both 
sides from the maximum.  

The π2 -periodicity of Fabry-Perot spectra allows 
to determine the area restricted by the contour of a 
maximum minus the area restricted by envelope function 
of adjacent minima through the structure parameters as   

[ ] ζ−ζ= ∫
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where 
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This integral is the standard integral [28]. 
In the region of absorption the integration 

procedure can be simplified by replacement minR  at the 
maximum frequency by the mean value of two adjacent 

minima ( )1min,1min,2
1

+− + mm RR  [22]. Clearly, this way can 

be applied to the transmitted waves.  
 
2. Free layer and the fixed one on substrate 

surfaces with constant absorption const2 =χ . The 
values of energetic coefficients ( ) minmax,,TR  in the 
absorptive films are a function of λ . Even for absorptive 
layers with constant absorption, energetic coefficients 
( ) minmax,,TR  vary with variation of λ . According to the 
definition given by Michelson the visibility of the 

interferogram 
minmax

minmax
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= . Then, according to the 

expression (7) we have  
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Using the transformation  
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we obtained that [ ] 112
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. Therefore, when the 

absorption index 2χ  does not depend on frequency, the 

relative slope between linear dependences 1ln −W  and 
δ~Im  does not depend on frequency for an arbitrary ratio 

between the refraction indices 3,2,1n  (Fig. 3) and the 
relation  
 

1ln −W = ( )δ+ ~Imexpconst  (17) 
 

ω0 
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Fig. 3. Calculated dependences of 1ln −W , 1ln −V  and 

δ~Im  for parameters: 11 =n , 25.12 =n , 5.33 =n , 

0038.02 =χ , m15 µ=d . 
 
 
 
is valid with accuracy to constant. Slope of Vln  
depends on the ratio between the refraction indices 

3,2,1n .  

4. Principal conclusions 

Amplitude-phase Fabry-Perot spectra for single-layer 
structures at the normal can be described by the 
envelope functions ( ) minmax,,TR .  

The width of the interference band as a phase 
separation between the points, for which the reflectance 

are ( ) ( )[ ]minmax ,,
2
1 TRTR + , is determined through 

instrumental characteristics of the Fabry-Perot 
interferogram of single-layer structures.  

In the region of constant light absorption in film, 

the slope of 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

−

minmax

minmaxln
RR

RR
 equals to that of δ~Im . 
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