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Abstract. Presented is the study of the diffraction properties of transmission holographic 
polymer dispersed liquid crystal (H-PDLC) grating. We constructed a two-dimensional 
model of H-PDLC film with cylindrical LC droplets. Director distribution inside LC 
droplets was calculated using the Monte-Carlo method. To calculate light propagation 
through the film we have solved numerically the Maxwell equations using the finite-
difference time-domain method (FDTD). The FDTD analysis of diffraction was 
performed for s- and p-polarized incident light. Externally applied electric field influence 
on the diffraction efficiency was studied. 
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1. Introduction 

Holographic polymer dispersed liquid crystals (H-
PDLCs) are of recent interest due to a number of 
applications thereof include reflecting flat-panel 
displays, optical interconnects, diffraction lenses with 
switchable focus, optical data storage, application 
specific lenses, and image capture devices. H-PDLC 
materials are formed by exposing a light-sensitive 
homogeneous monomer and LC mixture by an 
interference pattern. The number of monomers is 
reduced in the stronger irradiated regions with the 
polymerization and the monomers from the dark regions 
diffuse into the illuminated zones. As a result of the 
above process, we get a grating made by a periodic 
distribution of small LC droplets embedded in a 
polymeric solid matrix. The main optical properties 
stemming from this periodic distribution can be easily 
controlled by an externally applied electric field. The 
high diffraction efficiency, high angular selectivity, low 
driving voltages, and fast switching times are the general 
requirements for H-PDLC transmission gratings. Many 
research groups make their efforts to improve these 
characteristics. A number of groups reported on the 
theoretical investigation of diffractive, polarization and 
switching properties of H-PDLCs. Sutherland et al. [1] 
developed a shaped-droplet model based on 
Montemezzani’s coupled waves theory for the Bragg 

gratings [2] and Wu’s model of droplet axis reorientation 
[3] to explain the switching curves of H-PDLC gratings. 
The effective medium theory and 2×2 matrix method 
were used by Sutherland [4] to model the Bragg 
diffraction and random scattering in reflective H-PDLC. 
In our previous work [5], we developed the model that 
combines Montemezzani’s anisotropic coupled waves 
theory, Monte-Carlo simulations for the director profile 
within a droplet and statistical averaging with the orien-
tational distribution function for droplet symmetry axes.   

Here we present the results of direct calculation of 
light propagation through the H-PDLC.  

2. Model description 

H-PDLC is a complex optical structure. For theoretical 
investigation of light diffraction in this structure, the 
coupled waves theory for thick anisotropic hologram is 
often used. It was introduced by Montemezzani. The 
coupled waves theory gives approximate results. It 
considers only incident and diffracted to the first order 
waves, other orders of diffraction are neglected. The 
second-order derivatives of the wave amplitude are 
neglected in the slowly varying amplitude appro-
ximation.  

We will use the FDTD calculation [6] of light 
propagation through the H-PDLC film by numerical 
solution of the Maxwell equations. The FDTD method 
provides a direct solution of the Maxwell equations by 
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direct discretization of them considering both the spatial 
and temporal variations of fields. The equations are 
solved in a leap-frog manner. The electric field is solved 
at one point in time, then the magnetic field is solved at 
the next point in time, and the procedure is repeated. The 
FDTD method accommodate multidimensional 
inhomogeneity of the dielectric tensor, it is capable of 
directing spherical waves, plane waves or Gaussian 
beams while in arbitrary incidence on material. Now it is 
well developed to study the light propagation in isotropic 
and anisotropic media and its efficiency has been proved 
in various light-LC problems [16-18]. This consolidates 
us in the choice of such a tool. The success of the FDTD 
method depends on a special grid arrangement, where 
electric and magnetic field components are located in 
such a way that the first two Maxwell equations 
(sometimes known as the Gauss laws) are implicitly 
enforced, and the electric and magnetic fields are 
automatically divergence-free. This arrangement, known 
as the Yee cell [7] is the main distinctive feature of the 
method. Kane Yee disctretized the system of the 
Maxwell differential equations and expressed it as a set 
of finite differences.  

The Yee discretization scheme in 2D case for 
anisotropic media is splitted into two systems of 
equations:  
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for TMz wave, and  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂
∂

−
∂

∂
ε∆+=

++
−+

y
H

x
H

tEE
n
x

n
y

zz
n
z

n
z

2
1

2
1

11 , (4) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

µ
∆

+=
−+

y
EtHH

n
zn

x
n
x

2
1

2
1

, (5) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

µ
∆

+=
−+

x
EtHH

n
zn

y
n
y

2
1

2
1

 (6) 
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1+n  points 

of time, respectively. These two systems of equations 

represent two independent wave polarizations: s-
polarized (TEz) and p-polarized (TMz) waves.  

A scanning electron microscopy study shows that 
LC droplets form as nanoscale domains in H-PDLC 
gratings [8]. To simplify our model, we suppose that the 
LC droplets is cylindrical in 2D geometry. The dielectric 
permittivity tensor of LC is associated with a director 
distribution inside a droplet, and can be written as:  

jiijij nnα⊥ ε+δε=ε , (7) 

where ⊥ε−ε=ε ||a ; ni, nj are the director field 
components.  

For further calculations, we suppose that the LC 
director projection on z axes is equal to zero. In this 
case,  
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We numerically simulate the director distribution 
inside the LC droplet to find the relative dielectric 
permittivity tensor of LC. The model that we used is the 
simplest model of nematic LC, which describes 
orientational interaction of molecules, this is the 
Lebwohl-Lasher lattice model [10], where the 
“particles” are treated as interaction sites (“spins”) with 
continuously varying orientation but with fixed 
positions. The term particle refers to a local group of LC 
molecules with the same orientation. Minimization of 
free energy was realized using the Monte-Carlo method 
according to the Metropolis algorithm. We described it 
in our previous papers [5]. There are a few other models 
that describe properties of LC more realistically, but 
they are much more complicated.  

With the size of LC droplets in the transmission H-
PDLC that is 50…100nm, it comes necessary to use a 
fine grid for calculation of light propagation through the 
LC droplets. Fine discretization in specific region of 
computational space is often required to achieve the 
desired results. It saves computational resources as 
compared to simple decreasing of Yee grid step.   

In Fig. 1, we show schematically the computational 
domain. For introduction of incident plane wave source 
into the FDTD lattice, we use the total field and the 
scatter field formulation [6]. The plane wave generates 
at the virtual interface between the total field and scatter 
field regions. It is based on a linearity of the Maxwell 
equations. Computational resources of computers are 
limited, because of this it is impossible to extend 
computational grid to infinity. Use of absorbing layers is 
the way to solve this problem. Computational domain is 
limited to Berenger perfectly matched layer (PML) [11]. 
This technique uses a special nonphysical lossy medium 
to absorb electromagnetic waves. A thin layer of this 
medium will absorb outgoing waves without reflection 
into computational domain. Calculation of field 
components Eqs (4)-(6) for each next moment of time 
results in propagation of the electromagnetic wave. The 
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near field obtained in simulation then transformed to far 
field using the electromagnetic equivalence principle. By 
this principle, it is necessary to calculate electric and 
magnetic currents in phasor domain and then project 
these currents to the required distance from the scatterer. 
Titus [9] in his dissertation simplified the Kirhhoff 
surface integral for the 1-D case:  
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where ( ) ( )[ ] 2/12
far0

2
far yyxxR −+−′+  is the distance 

to the observation point ( )farfar , yx , k = 2π/λ is the 

incident wave vector, nearψ  is the near field electric or 
magnetic component. Thus, the algorithm for solving the 
light propagation problem is as follows: we calculate the 
director profile inside the LC droplets by the Monte-
Carlo method; then we use the FDTD simulation to 
obtain a near-field diffraction pattern; the final step is 
the transformation of near-field data to far-field ones.  

3. Results 

We investigate the diffraction properties of hologram 
under the applied voltage for both p- and s-polarized 
incident beams. We used the following parameters for 
simulation of H-PDLC film [1]: the thickness d = 8 µm, 
the grating period Λ =1 µm, the width L = 40 µm, the 
dielectric permittivities LC

⊥ε  = 2.356225, LC
||ε = 2.8224, 

polε  = 2.3409, the incident light wavelength λ = 

0.633 µm.  
For accurate simulation of H-PDLC, we need to set 

dielectric permittivities for every grid point. From the 
beginning, we set the dielectric permittivity for a rectangle 
with dimensions Ld ×  equal to polymer dielectric 
permittivity. Then, we fill stripes inside this rectangle with 
LC droplets in such a way as to form the grating with the 

period Λ . The simulation program is constructed in such 
a manner that each LC droplet has corresponding class 
that specifies the dielectric permittivity tensor of the 
droplet. This class makes fine discretization of 
computational grid with refinement factor of 5 [12]. Thus, 
the grating period Λ  consist of the region with LC 
droplets of the width αΛ and polymer region with the 
width (1−α)Λ. The volume fraction of LC in the stripe is 
fc. Our model of H-PDLC is constructed according to the 
experimental works on investigation of the structure of H-
PDLC [14]. We study the diffraction properties of H-
PDLC for the angle of incidence equal to the Bragg one, 
which can be obtained from  
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Here λ0 is the incident light wavelength in vacuum, 
0n  is the average refraction index of the grating.  

To investigate the diffraction of p-polarized light, 
we used the system of Eqs (1)-(3) and Eq. (8) for the 
dielectric permittivity of the LC droplet. We set the 
initial orientation of axes of LC droplets along the 
grating vector. Effect of external electric field on H-
PDLC is calculated using the Monte-Carlo simulation 
for director profile. The value E is measured in 
dimensionless units. The critical field 1=E  corresponds 
to the applied electric field value of about 20 V/µm.  

We define the diffraction efficiency according to 
[13] as the ratio between the intensity of a chosen 
diffraction order and the sum of the intensities of all the 
other diffraction orders. In our case, only the nearby 
orders give important contributions, which means:  

01

1

II
I
+

=η
−

− , (11) 

where 0I  denotes the intensity of the forward diffracted 
beam and 1−I  is the intensity of the 1st order diffracted 
beam. Such a definition was used for compensation of 
various optical losses.  

Fig. 2 illustrates the diffraction of p-polarized light 
for various values of applied external field. Our results 
show that the maximum of diffraction efficiency corre-
sponds to zero applied field. It can be explained by big 
difference in dielectric permittivities of liquid crystal and 
polymer. Increasing of voltage leads to reorientation of 
LC director inside droplets. Because of this dielectric per-
mittivity of the droplets changes. Modulation of dielectric 
tensor became small and diffraction efficiency decreased.  

Earlier in Eq. (8), we supposed that the LC director 
has zero projection on the axis z. From this it follows 
that the s-polarized incident light will not diffract due to 
a small difference in the dielectric permittivities of 

LCε⊥ and polε . In fact, the experiments show that the s-
polarized light is diffracted. We simulate a situation 
when 1≈zn  to study diffraction of the s-polarized light 
on H-PDLC.  

 
Fig. 1. Geometry of the computational domain. 
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Fig. 2. Far-field intensity for diffraction of  p-polarized light 
under external field. The V value was measured in 
dimensionless units. 

 
 
 
By the example of diffraction of the s-polarized 

light, we will discuss the difference between the 
approximate theory of Montemezzani and numerical 
simulation. The coupled waves theory for thick 
anisotropic holograms developed by Montemezzani and 
Zgonik assumes that the dielectric permittivity of media 
is periodically modulated as follows: 

)(cosεεε 10 Kx+= ,                                             (12) 

where ε0 is the average dielectric tensor of the composite 
and ε1 is the amplitude of the dielectric tensor 
modulation. Sutherland [1] showed that, for H-PDLC 
grating, the dielectric permittivities can be expressed as:  
 

( )cc ff α−ε+αε=ε ⊥⊥ 1polLC
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0
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π
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where f is the bulk fraction of the dispersed material ( f 
has the shape of a periodic rectangular wave that is zero 
in the solid polymer region and has a value  fc in the 
PDLC region), the width of the PDLC region is αΛ 
(where α is a fraction of LC stripe in period), LC

||ε  and 
LCε⊥  are the effective relative permittivities of LC, and 
polε  is the relative permittivity of the polymer. This 

approximation for effective dielectric constant holds as 
long as dielectric constants of the host and dispersed 
materials are nearly equal.  

Fig. 3 shows diffraction of the s-polarized light on 
H-PDLC with smooth modulation of dielectric 
permittivity Eq. (12). The impinging plane wave has the 

Gaussian profile to reduce the left and right 
computational domain boundaries effect on the 
calculation result. Amplitude of the electric field zE  is 
showed by colors: dark grey is negative and light grey is 
positive. As shown in Fig. 3, light propagates through 
the H-PDLC and changes its phase so that at the output 
it forms the plane wave.  

In Fig. 4, shown is diffraction on the H-PDLC with 
LC droplets. As clear from the figure, light diffracts 
similarly to the scheme in Fig. 3 with the difference that 
now we can see the scattering by the droplets.  

Using the far-field diffraction pattern, we can 
compare the diffraction efficiencies of both gratings. 
Calculation of the diffraction efficiencies gives 
ηsmooth= 0.83 for the grating with smooth modulation of 
dielectric permittivity and ηdrops= 0.75 for that with LC 
droplets. Montemezzani showed that theoretically the 
diffraction efficiency of thick transmission holographic 
gratings can achieve η = 1. We compare diffraction on 
H-PDLC grating composed of cylindrical LC droplets 

(where dielectric permittivity expressed as 
||

1 1
ε

=ε−zz  

(Fig. 4)) with that on grating with smooth modulation of 
dielectric permittivity Eq. (12) (Fig. 3). All parameters 
of the gratings are chosen to be the same. Figs 3-5 shows 
that the grating operates in the Bragg regime: light is 
incident angularly 18º and diffracts to −18º. The 
diffracted peaks are different because of light scattering 
by the LC droplets. We suppose that noise in Fig. 5 
induced by scattering by the LC droplets.  
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Fig. 4. Diffraction on H-PDLC composed of LC droplets. 
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Fig. 3. Diffraction on H-PDLC with smooth modulation. 
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Fig. 5. Far-field intensity for H-PDLC with smooth modulation 
and H-PDLC composed of LC droplets. Diffraction of the s-
polarized light. 
 

4. Conclusions 

We have presented the model of H-PDLC transmission 
grating that combines the Monte-Carlo simulation for 
director profile inside cylindrical droplets and the FDTD 
calculation of light propagation through the film. It was 
shown that the grating operates in the Bragg regime. The 
developed model is suitable for computing the 
diffraction characteristics of holographic gratings.  

We show the operating modes of the grating for p-
polarized beam: diffraction mode – for the zero external 
field; intermediate mode – for voltages lower than 
critical; and transmission one – for electric field higher 
than critical. External field reorients the director inside 
LC droplets, what leads to changes in modulation 
dielectric tensor. This allows balancing between 
intensities of diffracted and transmitted beams and 
controlling the diffraction efficiency.  

Comparison of diffraction of the s-polarized light 
on the H-PDLC (where stripes are composed of LC 
droplets) with H-PDLC with smooth modulation of 
dielectric permittivity (usually used in model of H-
PDLC) shows that there are “scattering” by the droplets. 
Due to this fact the intensity of diffracted beam for H-
PDLC with LC droplets is lower. 

 
Acknowledgements 
 
This work has been partially supported by: INTAS 

Young Scientist Fellowship Award 1000019-6375 to V. 
Kubytskyi (2007-8). NATO Grant CBP.NUKR.CLG. 
981968 “Electro-optics of heterogeneous liquid crystal 
systems” awarded to V.Reshetnyak (2006-8); We also 
gratefully acknowledge discussions with Dr. Tigran 
Galstian. 

References 

1.  1. R.L. Sutherland // J. Opt. Soc. Amer. B 19, 
No.12, p. 2995-3003 (2002).  

2.  G. Montemezzani, and M. Zgonik // Phys. Rev. E 
55, p. 1035-1047 (1997).  

3.  B.-G. Wu, J.H. Erdmann, and J.W. Doanne // 
Liquid Cryst. 5, p. 1453 (1989).  

4.  R.L. Sutherland, V.P. Tondiglia, L.V. Natarajan, 
P.F. Lloyd, and T.J. Bunning // J. Appl. Phys. 99, 
123104 (2006)  

5.  V. Kubytskyi, V. Reshetnyak, T. Galstian // MCLC 
438, p. 283-290 (2005).  

6.  A. Taflove, Computational electrodynamics: the 
finite difference time domain method, second 
edition. Artech House, 2000.  

7.  K. Yee // IEEE Trans. Antennas Propag. 14, 
p. 302-307 (1966).  

8.  R.T. Pogue, L.V. Natarajan, V.P. Tondiglia, S.A. 
Siwecki, R.L. Sutherland, and T.J. Bunning // Proc. 
SPIE 3475, p. 2-11 (1998).  

9.  C.M. Titus, Refractive and diffractive liquid crystal 
beam steering devices. Ph.D. dissertation in Kent 
State University, 2000.  

10.  P.A. Lebwohl and G. Lasher // Phys. Rev. A 6, 
p. 426 (1972)  

11.  J.-P. Berenger // J. Comp. Phys.114, p. 185-200 
(1994).  

12.  M.W. Chevalier, R.J. Luebbers, and V.P. Cable // 
IEEE Trans. Antennas Propagat. 45, p.411-421 
(1997).  

13.  I. Drevensek-Olenik, M. Fally, M.A. Ellabban // 
Phys. Rev. E 74, 021707 (2006).  

14.  T.J. Bunning, Holographic polymer-dispersed 
liquid crystals (H-PDLCs) // Annu. Rev. Mater. Sci. 
30, p. 83-115 (2000). 

15.  H. Kogelnik // Bell Syst. Tech. J. 48, p. 2909-2947 
(1969).  

16.  B. Witzigmann, P. Regli, W. Fichtner // J. Opt. 
Soc. Amer. A 15, p. 753 (1998).  

17.  D.K. Hwang, A.D. Rey // Liquid Cryst. 32, p. 483 
(2005).  

18.  V. Ilyina, S.J. Cox, T.J. Sluckin // Opt. Communs 
260, p. 474-480 (2006). 

 
 
 
 


