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Abstract. The Seebeck coefficient α and Hall constant RH are calculated for monopolar 
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obtained for the same crystals by calculations founded on relaxation time approximation.  
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1. Introduction 

If mobile carriers in crystal belong to several different 
groups there is no practical possibility to relate measured 
values with space flows of separate groups. The system 
that contains several substantially different groups of 
carriers has specific properties absent for crystals where 
unique group of carriers is actual. For instance, in a 
multy-group situation the state of zero total current can 
be provided in crystal with nonzero density of current 
for every group. Therefore, distribution of carriers over 
space of momentum in this crystal can be 
nonequilibrium in absence of total current.   

Quite another situation appears if only one group is 
actual: the measured voltage drop on the total crystal 
length is evidently tied to the density of current for this 
unique group.  

Below we consider two problems. The first one 
concerns monopolar semiconductor where carriers  
belong to one group (simple band) and their space 
distribution is nonuniform due to a small gradient of 
temperature T  and Fermi-energy εF . Phenomenological 
relation between the density of current j

r
 and 

microscopic dynamical and statistic forces in the 
stationary case has the form 

jTeE F
rrrr 1~~)/1( −σ=∇α−ε∇− .   (1) 

Here  e  is the charge of band carriers, E
r

 is the vector of 
electrical field, σ~  is the tensor of conductivity and α~  is 
the so-called Seebeck coefficient; the latter in general is 
a tensor value, too. 

For simplicity, we restrict our consideration in this 
paper by the case of band with spherical symmetry and 
for small divergence of equilibrium. Then the tensor 
values in Eq. (1) degenerate in scalars, and we obtain  

jTeE F
rrrr 1)/1( −σ=∇α−ε∇− .   (2) 

Note that coefficient  α  is not a kinetic coefficient 
because it does not ensure a direct relation between 
some force and the density of current flow. We can call 
it as a structural coefficient, that depends on the band 
structure. 

Another problem relates to an uniform crystal 
being in the stationary uniform external magnetic field 
H
r

 of a classical value. Here, we consider again one 
group of carriers with the isotropic dispersion law and 
calculate the Hall-constant RH . 

Calculation of α and RH can be performed using by 
several different methods. Usual method starts from 
obtaining the nonequilibrium distribution function f  by 
the way of approximate solution of the kinetic Bolzmann 
equation, where the collision integral is replaced by a 
simple form containing relaxation time τ(ε) = 1/ν(ε) 
(see, for example, Refs. [1] and [2]). Here ε is the band 
carrier energy. During the next step one calculates the 
current density based on the obtained f  and marks out 
the values interesting for  us (for instant, the coefficient 
α in Eq. (2) ) . 

Another method applied here uses a set of balance 
equations which are moments of quantum kinetic equa-
tion in the space of wave vector (see Refs. [3] and [4]).  
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We will compare together α and RH obtained by 
different methods and will compare the calculated values 
of  α  with some experimental data. 

2. Specific thermo-emf  

2. 1. Seebeck coefficient  α in τ-approximation 

The Seebeck coefficient calculated in Refs. [1] and [2] 
can be presented in the form 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

〉ετ〈
〉ετε〈

−ε=α τ )(
)(1

)( FeT
 .    (3) 

Here, angle brackets denote the statistic average 
with equilibrium distribution function (see below Eqs. 
(5), (7) and (14)). 

Consider the isotropic dispersion law of the 
following form: 
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For this case,  
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)(
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2.1.1. Parabolic dispersion law 
If the function )(εm  in Eq. 4 does not depend on 
energy (that is dispersion law is parabolic), we have the 
standard simple form 

*2/)( 22 mkk
r

h
r
=ε .   (6) 

Then, it is possible to rewrite Eq. 5 in the following 
manner (see Ref. [1], formula (7.2) of Chapter IX):  

( ) ( ) =εεε∂ε∂εεεε∂ε∂=〉ε〈 ∫∫
∞∞

0

2/3
0

0

2/3
0 /)()(/)()( dfdCfC

 =  [ ] ∫∫
∞∞

εεεεεε
ε∂
∂

ε
0

2/1
0

0

2/3
0 )()()(

3
2 dfdCf .  (7) 

Here, f0(ε) = {1+exp[(ε − εF) / kBT]} − 1. In Ref. [1] 
one relates the expression (3) to an opened circuit 
scheme ( 0=j

r
). 

The expression (2) does not depend on the mode of 
electrical circuit and relates to an arbitrary current 
density in the region of small divergence of equilibrium. 
So, it relates to the case 0=j

r
 as well as to the case 

0≠j
r

. 
If one uses the model form 

r

BTk ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ε
τ=ετ 0)(            (8) 

and dispersion law (6), then he obtains from Eqs (3) and 
(8) the folowing expression for the Seebeck coefficient: 

⎥
⎦
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2/1

2/3
)( TkF

TkFrTk
eT BFr

BFr
BF , (9) 

Here, 2/1−=r  for scattering by longitudinal acoustic 
phonons, 2/3=r  for scattering by charged impurities. 
The Fermi integral is introduced by the following 
definition: 

 

∫
∞

η−++Γ
=η

0
)exp(1)1(

1)(
w
dww

r
F

r

r .     (10) 

 
In this formula Γ is the gamma-function.  

It is very strange: Seebeck coefficients (3) and (9) 
don’t depend absolutely on the intensity of carriers 
interaction with the scattering system. But it evidently 
depends on the energetic parameter of relaxation time r  
even if this interaction is very weak. One more 
significant objection concerns the formal record of value 
α. If we consider  monopolar crystal with the simple 
band in the case 0=j

r
(then the distribution of carriers 

in the space of velocities is equilibrium), the expression 
for thermo-emf should not contain any relaxation 
characteristics. 

We consider these misunderstandings as a 
consequence of employing of the τ-approximation for 
rough solution of the Boltzmann equation. We think that 
this approach can give results of quality value only (see, 
for example, Ref.[4]). 

2.1.2. Nonparabolic dispersion law 

Consider now an other dispersion law. Let in Eq.(4) 

)/1)(0()( Gmm εε+=ε .    (11) 

This form is suitable for n-InSb at ε << 20εG (here, 
;014.0)0( 0mm = εG = 0.17 eV). For this case, one 

obtains using Eq. (8) the following expression: 

.
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   (12) 
Results of calculations performed with the 

formulae (3), (9) and (12) are shown below. 

2.2. Seebeck coefficient obtained from the balance 
equation 

The quantum kinetic equation for small deviation of 
equilibrium for the system of uniform carriers  has the 
form (see Ref. [3])  



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 1. P. 47-52. 

 

 

© 2009, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

49 

k
k f
k

f
Ee r

r

r
h

r
St1

0

=
∂

∂
.  (13) 

Here kf
r  is the nonequilibrium distribution 

function, )(0
0 ε= ffk
r  is the equilibrium distribution 

function, e is charge of bend carriers.   
For a slightly nonuniform system, the quantum 

kinetic equation can be presented in the form (stationary 
case) 
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 Applying the operator 

∫π
kdk
rr 3

3)2(
2  (16) 

to Eq. (14), we obtain the equation that represents 
balance of dynamical and statistical forces:  

0)( =++ε∇− resTF FFrEe
rrrrr

.     (17) 

Here,  
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2 , (18) 

n is the density of carriers. The force resF
r

 is the first 
moment of the scattering integral and can be presented 
in the form  σ= /jeFres

rr
. As a result (see Eqs. (17) and 

(2)), we obtain 

=α – ∫ ε−ε
∂

∂

π
kdk

k

f
k

eTn F
j

k
i

rrr
3

0

3 ])([
)2(
2  .  (19) 

Note that for the linear theory this expression (in 
contrary to Eqs (3) and (8)) does not depend on relaxation 
characteristics. It contains only equilibrium values and 
depends only on parameters of the dispersion law. 

2.2.1. Parabolic dispersion law 

Introducing the law (6) in Eq. (19) and performing 
integration, we find (see Eq. (10)): 

⎥
⎦

⎤
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⎣

⎡
ε
ε

−
ε

−=α
)/(
)/(

2
5

2/1

2/3
TkF
TkF

Tke
k

BF

BF

B

FB      (20) 

(this formula, underline it again, does not depend on the 
mechanism of scattering). Pay attention that  expression 
(20) coincides with the expression (9), formally accepted 
at 0=r .   

 For nondegenerate carriers 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ε
−=α

2
5

Tke
k

B

FB   ;   (21) 

For high degeneration 

F

B
e
Tk
ε
π

=α
2

22
 .  (22) 

 Results of numerical calculations performed for n-
GaAs shown in Figs 1 , 2 and 3. Here and further curves 
1 relate to the formula (20), curves 2 and 3 − to the 
formulae (9) at 2/3=r  and 2/1−=r  consequently 
(see Ref. [1]). Fig. 1 relates to density n = 3.5×10 17 c -3, 
Fig. 2 relates to the density  n = 7.7×10 18 cm -3 . Black 
points in Fig. 3 represent the experimental data at 

KT 300= (see  Ref. [5]). 
 

 
Fig. 1. 

 

 
Fig. 2. 

 
Fig. 3. 
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2.2.2. Nonparabolic dispersion law  
 

Consider now the dispersion law (11) and apply it to  
n-InSb.  Then it follows from (19): 

.)/21()/1()(
)(
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)0(22
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32
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εεε+εε+ε−ε
ε∂

ε∂
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π
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∫
∞

d
f

eTn
m

GGF

h
 

  (23) 
 Fig. 3 represents the dependences α(n) calculated 

for different temperatures as based on the formula (23) 
(see curves 1) and on formulae (8), (12) at  2/3=r   
(see curves 2).  The curves (a) relate to temperature 

KT 50= , the curves (b) relate to temperature 
KT 100= , the curves (c) relate to temperature 

KT 150= , the curves (d) relate to temperature 
KT 200= , the curves (e) relate to temperature 
KT 300= , the curves (f) relate to temperature 

KT 400= . Distinction between the curves 1 and 2 
calculated with the different approaches is quite evident. 
 

 

 

 
Fig. 4.   

 
Fig. 5. 
 

Fig. 5 represents the dependences α(T) calculated 
at 31410 −= cmn . Here and father the curve 1 relates to 
the formula (23), the curve 2 − to the formulae (9) and 
(12) at 2/3=r . One can see that the model which uses 
τ-approximation is not suitable for electron indium 
antimonide. 

3. Hall-effect 

In the presence of uniform magnetic field H
r

, the 
quantum kinetic equation for band carriers has the form 
(stationary case) 
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Here, 
k

v kr
h

r r

∂

ε∂
=

1  ; ))(2/1(],[ BAABBA +=+  ; )(εΛ  is 

represented by Eq. (15). The magnetic field is supposed 
to be classical: 〉ε〈<<cmeH */h . 

Apply to Eq. (24) the operator (16). Then, we 
obtain the equation that represents balance of forces (see 
Eq. (18)): 

0)()])(/1([ =++ε∇−×+ resTF FFruHcEe
rrrrrrr

.    (25) 

Here, σ−=σ−= //2 jeuneFres
rrr

 (we denote the 
average drift velocity of carriers as  ur ). In Eq. (25), we 
have omitted the term 
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because further we use the simple dispersion law (6). For 
this case 0)( =HC

rr
. Note that Eq. (25) was obtained 

from the quantum kinetic equation (24) without any 
approximation. 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 1. P. 47-52. 

 

 

© 2009, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

51 

 
Fig. 6 (a). 

 
Fig. 6 (b).  

 
Fig. 6 (c, d, e). 

 

 
Fig. 6 (f, g, h). 

Consider here uniform crystal with n-conductivity 
and simple band. For this case   0)( =+ε∇− TF Fr

rrr
 and 

Eq. (25) has the form (here and further 0>e )  
0)/1())(/1( =σ−×+ jjHencE

rrrr
.     (26) 

Let z-axis is directed along the vector j
r

 and vector  

H
r

  is disposed in {xy}-plane: 
),0,0( zjj =

r
 ,   )0,,( yx HHH =

r
.  (27) 

It follows from Eqs (26) and (27): 

.0)/1(

;0)/(;0)/(

=σ−

=−=+

zz

zxyzyx

jE

jencHEjencHE
 (28) 

We consider here the vector zz Ee
r

 as applied 

electric field and the vector yyxxH EeEeE
rrr

+=  as Hall-
field. 

The following relation determines the Hall constant  
RH:    

jHRjHHREEE HyxHyx ⊥⊥ =+=+= 2222    ; 

zz Ejj ||σ== .  (29) 
As a result, one obtains: 

cen
RH

1
=  . (30) 

We can see that in the classical limit for magnetic 
field Hall the constant RH does not depend on magnetic 
field.  We can see also that the Hall constant does not 
depend on the form of dispersion law )(k

r
ε , if this law 

is isotropic.  These results completely differ from results 
obtained in Ref. [1] for −τ approximation. There 
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ετ+

ετ
+

ετ+

ετ

ετ+

ετ

=

 .     (31) 
Results of numerical calculations performed using 

of Eqs (31) − (34) and (8) at different densities and 
temperatures are shown in Fig. 6 . Here T = 300 K and   
n = 10 15 cm –3 for (a) , T = 300 K and  n = 10 18 cm - 3 for 
(b) , T = 300 K  and  eτ0 H / m*c → 0 for (c) ,  T = 300 K 
and  eτ0 H / m*c = 1 for (d) , T = 300 K  and  eτ0 H / m*c 
= 4 for (e) ,  n = 3.5×10 17 cm –3 and  eτ0 H / m*c → 0 for 
(f ),  n = 3.5×10 17 cm –3 and  eτ0 H / m*c = 1 for (g),      
n = 3.5×10 17 cm –3 and  eτ0 H / m*c = 4 for (h) . 

APPENDIX      

Nernst-Ettingsgauzen effect in nonuniform crystal 

Consider the case when external magnetic field and 
constant gradient of temperature are applied to 
monopolar crystal with a simple isotropic band. Then, 
Eq. (26) changes to (here and below 0>e ) 
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rrrrrr
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Here (see Eqs. (18), (10) and (6)), 
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 (A3)  

 Using Eq. (A1) consider Nernst-Ettingsgauzen 
effect showing relation of the measured voltage drop 
with the crossed gradient of temperature T∇

r
  and 
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magnetic field H
r

. Choose the following orientation of 
fields and current:  

)0,0,( xHH =
r

 ; ),0,0( TT z∇=∇
r

 ;  ),0,0( zjj =
r

. 
      (A4) 

It follows from (A1) − (A4): 

TecnHE zxy ∇ασ= )/(* .   (A.5) 

Determine the Nernst-constant Нернста  Q  by the 
relation: 

THEQ zxy ∇= /*  .  (A.6) 

Then, 

ecnQ /ασ= .    (A.7) 

Using Eq. (20) one obtains: 

  
)/(
)/(

2
5)0(

2/1

2/3
2 TkF

TkF
Tknce

HkQ
BF

BF

B

FB
ε
ε

−
ε=σ

= .  (A.8) 

The value σ/Q  does not depend on relaxation 
characteristic (in contrary to subsequent result obtained 
in Ref. [1]). 
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