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Abstract. The purpose of the article is to provide rigorous analysis of light 
depolarization by inhomogeneous linear birefringent media in single scattering case. The 
object under investigation is a lossless anisotropic crystalline slab with surface 
inhomogeneity. For the analysis we use the Mueller matrix model of such class of media 
derived in [1], Cloude’s coherency matrix method and known single value depolarization 
metrics. Sample calculations are given for calcite CaCO3, paratellurite TeO2 and lithium 
niobate LiNbO3.  
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1. Introduction 

When the polarization state of the light is characterized by 
means of the Stokes parameters, the transformation matrix 
is known as the Mueller matrix [2, 3]. From the properties 
of the Mueller matrix, one can draw insightful information 
about the underlying system. The exploitation of light 
polarization properties has a wide range of applications in 
a variety of fields, namely photonics technology [2, 3], 
astrophysics [4], biological and ecological optics [5] 
where scattering is linked to polarization state 
transformation and occurrence of depolarization. 
Depolarization is the result of decorrelation of the phases 
and amplitudes of the light electric vector and selective 
absorption of polarization states [2]. 

As shown earlier [1], the Mueller matrix of 
anisotropic lossless crystalline slab with surface 
inhomogeneity (roughness) in the eigen coordinate 
system has the following form: 
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( ) ( )( )2exp 222
eoheo

brf
xy nnkhnnik −σ−−=Φ , (2.b) 

( ) 2124241 kdzdw += , (2.c) 

( )( )11222 −−σ=σ eohxy nnk , (2.d) 

( )2exp1 xyxy σ−−=η , (2.e) 

λπ= 2k  is a wavenumber; h  is the thickness of a 
crystalline slab; eon ,  denotes refractive indexes of 
medium associated with its linear eigenpolarizations, 
and d  is the beam radius. 

After performing normalization, we get: 
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where  

( ) ( )22112211 Φ+ΦΦ−Φ=a , (4) 
( )2211122 Φ+ΦΦ=b , (5) 

( )brf
12arg Φ=ψ . (6) 

To describe depolarization, it has been introduced 
several the so-called “single value depolarization 
metrics”. In this paper, we use only those of them which 
do not need scanning the polarization states of input 
light for characterization of medium depolarization 
ability. First single value metrics is the depolarization 
index DI  introduced in [6]: 
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where ijm  are Mueller matrix elements in the eigen 
coordinate system. The depolarization index lies within 
the range 10 ≤≤ DI . Boundary values of DI  associate 
with the case of unpolarized and totally polarized output 
light, respectively. 

The Q -metrics is [7]: 
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where 2
14

2
13

2
12 mmmD ++=  is the diattenuation 

parameter and 10 ≤≤ D . 
The bound on the Q -metric is 30 ≤≤ Q . In this 

case, 0=Q  corresponds to totally depolarizing medium; 
10 << Q  − to partially depolarizing medium; 31 <≤ Q  

represents a partially depolarizing medium if, in 
addition, 10 << DI , otherwise, represents non-
depolarizing diattenuating medium; 3=Q  is for non-
depolarizing non-diattenuating medium. 

One more singlular value depolarization metric that 
we use below is entropy. The entropy S  was introduced 
in Cloude’s coherency matrix method [8, 9], which is as 
follows. The coherence matrix J (with elements ijJ ) is 
derived from the corresponding Mueller matrix as: 

 
( )4433221111 41 mmmmJ +++=  
( )4224311313 41 imimmmJ −++=  
( )4334211221 41 imimmmJ −++=  
( )4132231423 41 immmimJ −++=  
( )4224311331 41 imimmmJ +−+=  
( )4433221133 41 mmmmJ −+−=  
( )4132231441 41 mimimmJ +−+=  
( )4334211243 41 mmimimJ +++−=
( )4334211212 41 imimmmJ +−+=  (9) 
( )4132231414 41 mimimmJ ++−=  
( )4433221122 41 mmmmJ −−+=  
( )4224311324 41 mmimimJ +++−=  
( )4132231432 41 immmimJ +++−=  
( )4334211234 41 mmimimJ ++−=  
( )4224311342 41 mmimimJ ++−=  
( )4433221144 41 mmmmJ +−−= . 

  
Thus, J  depends linearly on M . It can be seen 

that the coherence matrix J  is positive semidefinite 
Hermitian and, hence, has always four real eigenvalues. 
The eigenvalues of the coherence matrix, iλ , can be 

combined to form a quantity that is a measure of 
depolarization in the studied medium. This quantity is 
called entropy and is defined as: 
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When eigenvalues iλ  of the coherence matrix J  
are given, we have for the initial Mueller matrix: 
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here q
DM  are the Mueller-Jones matrices obtained from 

the Jones matrices [2]. 
The Jones matrix, T (with elements ijt ), in turn, is 

obtained in the following manner: 
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where ( ) ( )Tqq
4321τ ττττ=  is q -th eigenvector of 

the coherence matrix J . 
Thus, the Cloude coherency matrix method is, in 

essence, an additive matrix model of the depolarizing 
Mueller matrix, and represents the initial depolarizing 
Mueller matrix as a weighted convex sum of four 
Mueller-Jones matrices. 

If three of the eigenvalues of J  vanish, then the 
initial matrix M  is a deterministic Mueller-Jones 
matrix. If all four eigenvalues of J  are not equal to zero 
and, at that, 5.0≤S , then the Mueller-Jones matrix, 
which corresponds to the maximal eigenvalue, is the 
dominant type of deterministic polarization 
transformation of the studied medium. So, this method 
gives the possibility to study the anisotropy properties of 
depolarizing media. 

In this work, we investigate the features of light 
depolarization by inhomogeneous anisotropic media 
described by the Mueller matrix Eq. (3) using the 
singular value depolarization metrics presented above. 

2. Simulation results and discussion 

2.1. Cloude’s coherency matrix analysis 

Cloude’s coherency matrix corresponding to the Mueller 
matrix Eq. (3) has generally the form: 
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The eigenvalues of the coherency matrix T  Eq. (3): 
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Fig. 1. Dependence of the entropy S on depolarization index 
DI and inhomogeneity σh. 

The deterministic Mueller matrices in Cloude 
decomposition Eq. (11): 

( )11111 −−= diagM , (15) 
( )11112 −−= diagM , (16) 
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where: 22 bar += . 
It can be shown  that in order for Mueller matrix 

Eq. (3) to be physical, a following condition should be 
satisfied: 122 ≤+ ba . The analysis of 3M  and 4M  
using 4-component model [10] leads us to the conclusion 
that these matrices are the matrices of sequence of a 
linear phase plate with birefringence value Ψ  and 
partial polarizer with the linear dichroism value P . 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

ψψ−
ψψ

=

)cos()sin(00
)sin()cos(00

0010
0001

LinPhM , (19) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
+−
−+

=

P
P

PP
PP

LinAmp

2000
0200
0011
0011

M , (20) 

then 

.

)cos(2)sin(200
)sin(2)cos(200

0011
0011

/.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

ψψ−
ψψ

+−
−+

=

=

PP
PP

PP
PP

LinAmpLinPh MM

 (21) 

For 3M  we obtain: 
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Using the same method for 4M : 
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2.2. Singlular value depolarization metrics 

The expressions of depolarization index, polarization 
entropy and Q -metric for the Mueller matrix Eq. (3) has 
been determined according to [6-9] as follows: 

polarization entropy 

[ ])1()1(
4 )1()1(log

2
1 rr rrS −+ −+−= , (24) 

depolarization index 

( )( ) 3112 2 −+= rDI , (25) 

Q -metric 

( )22 121 abQ ++= . (26) 
Corresponding dependences ( ),( hDIS σ , ),( hQS σ , 
),( baS , ),( baQ ) for the following crystals: calcite 

CaCO3, paratellurite TeO2 and lithium niobate LiNbO3 
have been calculated and presented in (Figs 1 to 4). 

Fig. 1 presents the dependences of entropy S  and 
depolarization index DI  (with projections on 
corresponding reference planes) on the value of 
inhomogeneity hσ . It can be seen that the minimum 
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Fig. 2. Dependence of the entropy S on Q-metric and 
inhomogeneity σh. 
 

value of depolarization index and the maximum value of 
entropy are various for different crystals. This, as it will 
be illustrated below, is determined by the values of 
refractive indexes of crystals.  

Fig. 2 shows that the maximum value of 3max =Q  
is observed at 0=σh  for all the crystals, i.e., in the case 
when the Mueller matrix Eq. (3) corresponds to an 
ordinary linear birefringent plate. The minimum value is 
equal for all the crystals as well as for 1min =Q , which 
corresponds to the case of partially depolarizing 
medium. 

From Figs 3 and 4, one can see that the minimum 
value of Q -metric and maximum value of entropy S  
are reached at different values of a  for different 
crystals, Figs 3b and 4b. This is determined by the 
values of refractive indexes of the crystals. Indeed, in 
case of large inhomogeneity ( ∞→σh ), we have: 
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where ξ  is of the form: 

( ) ( )11 21 −−=ξ nn . (29) 
Thus, the entropy S  for this case is 
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Corresponding numerical values of ξ , ∞→σh
a , 

∞→σh
S  and value of inhomogeneity hσ  when in matrix 

Eq. (3) 0=b , i.e. when the case of large inhomogeneity 
takes place, are presented in the table.  

Table. Numerical values of ξ , ∞→σh
a , ∞→σh

S  and hσ  

for the case of large inhomogeneity. 
 

 1n  2n  ξ  ∞→σh
a  ∞→σh

S  hσ , 

mµ  

LiNbO3 2.208 2.300 0.93 0.07 0.498 2.896

TeO2 2.259 2.411 0.89 0.11 0.495 1.753

CaCO3 1.489 1.655 0.75 0.28 0.470 1.605

 
 
It needs to note that ∞→σh

S  in Eq. (30) is equal 

5.0  when 1=ξ . This means that 21 nn =  in this case 
and, thus, ∞→σh

S  for matrix Eq. (3) can never be equal 
to 5.0 .  
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Fig. 3. Dependence of the entropy S , Eq. (24), as a function 
of a  and b . 
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Dependences from Figs 3b and 4b for calcite, 
paratellurite and lithium niobate are presented in Figs 3a 
and 4a by white lines. Surfaces in Figs 3a and 4a 
determine all the possible values of Q -metric and 
entropy S  as functions of a  and b  for the media 
described by the Mueller matrix model Eq. (3). 

3. Conclusions 

In summary, we have studied depolarization of light by 
inhomogeneous anisotropic lossless crystalline medium 
in the single scattering case. We describe this medium 
with the depolarization index DI , Q -metric and the 
polarization entropy S  that is added by the medium to 
the scattered field. These quantities provide insights into 
the particular depolarization mechanisms of the various 
media. It has been shown that the polarization entropy of 
scattering medium in the case of large inhomogeneity 
differs from its maximal possible value for the class of 
depolarizing media with only two non-zero coherency 
matrix eigenvalues 5.0max =S . 
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