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Abstract. Parameterized equations have been derived using variational calculation for 
energy levels of Wannier excitons in 2D-parabolic quantum wells in uniform electric and 
magnetic fields. The formulation has been performed in the framework of the effective 
mass approximation and two-band model. Illustrations have been given for GaAlAs-
GaAs-GaAlAs and CdMnTe-CdTe-CdMnTe parabolic quantum wells. The comparison 
with existing data displays good agreement. 
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1. Introduction  

Parabolic and semi-parabolic quantum well (PQW, 
SPQW) structures have attracted considerable interest 
since the end of 1980s. They were grown and 
investigated experimentally [1]. In comparison with 
rectangular quantum well (RQW), parabolic potential 
results in a stronger localization and equidistant energy 
separation of eigenvalues, as well as a rich optical 
spectra making 1s, 2s, 3s exciton states and interband 
transitions up to n = 5 are observable [2]. In this paper, 
we present a general and direct formulation of the 
problem of the exciton in parabolic quantum wells in 
uniform electric and magnetic fields, which removes 
tedious intermediate calculation and makes the solution 
of the exciton problem faster and more accessible. For 
the complete theory, exact solution of this problem is 
rather complicated because of the large number of 
involved effects such as valence band mixing, coupling 
between excitons belonging to different subbands, in 
addition to the anisotropy of the bands and the carrier 
effective mass mismatch and the dielectric mismatch. 
The relative importance of these effects obviously 
depends on the nature of the band structure of bulk 
materials forming the heterostructure. In the recent 
decade, part of this work was done on these questions, 
and accurate theories, mainly for RQWs, are now well 
established [3, 4]. However, determination of exciton 
properties for a parabolic 2D-confining potential can be 

obtained in a relatively easy way when neglecting 
subband and band mixing corrections. The appropriate 
method in this case is the commonly used variational 
method in 2-band model. In the work hereby, we 
establish, in the framework of this method, a set of 
advanced analytical equations suitable to calculate the 
energy levels of the exciton in a given 2D-confining 
parabolic potential. We have taken as a starting point the 
formalism developed by Harrison et al. [5] for the 
specific case of CdMnTe-CdTe-CdMnTe rectangular 
quantum wells, into which we have added substantial 
improvements. The equations were judiciously arranged 
and simplified as much as possible, thus reducing the 
stage of numerical calculation and facilitating 
generalization. One of the advantages of the method is 
that all the useful entities are expressed in terms of some 
elementary integrals that involve only the solution of the 
one-particle problem. Success of the model is illustrated 
by comparing our results with the available data in the 
cases of CdMnTe-CdTe-CdMnTe and GaAlAs-GaAs-
GaAlAs PQWs for the ground ( ) exciton states [6]. sX1

2. The model  

Consider a heterostructure consisting of a single 
quantum well (QW) of type I in the z-direction. The 
confining potential is of a parabolic shape, say ( )ee zV  
for electrons and ( )hh zV  for holes. 
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Uniform electric F
r

 and magnetic B
r

 fields are 
considered to be parallel to the z-direction. Within the 
framework of the effective mass approximation, the 
Hamiltonian of an electron-hole system under the 
magnetic and electric fields, for the ground state X1s, is 
as follows: 
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where he ρ−ρ=ρ
rr

 is the relative distance between 
electron and hole in the yx −  plane,  represents the 

dielectric constant, 

ε

( )22
he zzr −+ρ= ,  

describes the motion of the electron (hole) in a constant 
electric field F along z-axis with the effective mass 

, and H

)( he HH

)( he mm ex describes the in-plane relative motion 
with the reduced mass μ . 
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Exciton eigenenergies E and wavefunctions ψ  are 
determined by minimizing the expected value H with 
respect to a suitable variational parameter:  

ψψψψ= /min HE .                                         (5) 

The trial wavefunction ψ  is chosen as  
φψψ=ψ he ,      (6) 

where φ is the coupling factor that will be chosen to 
conveniently describe the exciton state. Thus, we take  
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where λ is the variational parameter and  he zza −= . 
The first Landau levels are given by 

RE γ=0 ,      (8) 
where the dimensionless parameter Rc 2/ω=γ h  and 

μ
=ω

eB
c  is the cyclotron frequency, the scaling quantity 

R is the effective Rydberg defined by ( )2
2

2 ∗μ
=

a
R h  and 

μ
ε

=∗
2

2

e
a h  is the Bohr effective radius. 

 
Then, for non-vanishing magnetic field, the binding 

energy EB is given by  

EEEEE heB −++= 0 ,       (9)  

where Ee and Eh are solutions of the one-particle 
Hamiltonian in a constant electric field iiii EH ψ=ψ . 

The expression (5) is now to be evaluated in order 
to derive E(λ) and then EB(λ). Substituting (6) and (7) 
into (5) and performing integration, the parameterized 
binding energy reads as 
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where the entities )(λnI  and L are given in appendix 
(equations (A2), (A10)), and σ  is the reduced mass ratio 

given by 
zμ
μ

=σ  with 
hem

1

z m
11

+=
μ

.    

3. Results and discussions 

In this work, we apply the model developed in the 
section 2 to calculate binding energy of excitons in a 
single infinitely deep wide parabolic well (WPW). 
Curiously, this model seems to be much more adapted to 
PQWs making this solution quasi-analytical. The studied 
structure consists in a type I heterostructure with 
parabolic well for electrons and holes, described by 

( ) 2
2

2 i
i

i
ii z

m
zV α

= , where ii
w

i Um
L

22
=α , Ui being the 

discontinuity of the band edge between the centre of the 
well and its outermost layers. Furthermore, it is well 

known that when the dimensionless quantity 
4

2
wi

i
Lα

=Ω  

is larger than approximately 3, the difference between 
the ground state energies of the finite and the infinite 
quantum wells is negligible [8]. Then, the ground state 
solutions of one particle problem for the parabolic well 
in the absence of electric field are those of the harmonic 

oscillator, namely: ( ) ⎟
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= . In addition, for current values of structure 

parameters, the function p(a) reduces, in this particular 
case, to the following simplified form:  
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which gives for In integrals the iterative relation: 
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3.1. In the absence of magnetic and electric fields 

To test the validity of equation (10), we have applied our 
model first in the absence of magnetic and electric fields, 
to calculate the binding energy of HX excitons for 
Ga0.7Al0.3As-GaAs-Ga0.7Al0.3As and Cd0.22Mn0.78Te-
CdTe-Cd0.22Mn0.78Te. By way of comparison, we have 
referred to the article of Rusin et al. [6] and used the 
same parameters therein. In this work, the authors have 
used the so-called “effective variational method”, in 
which the form of the trial functions is subject to 
variation. The results obtained using this method are 
very close to ours, as it is shown in Fig. 1, for the whole 
range of Lw values and for both structures. However, 
energy values calculated using our method are found to 
be slightly higher and more close to the experimental 
values that are reported in the same article.  

3.2. Magnetic field effect  

In Fig. 2 we show, for the intensity of electric field F=0, 
the variation of the exciton binding energy EB in a 
Ga0.7Al0.3As-GaAs-Ga0.7Al0.3As PQW for 1s states of 
heavy-hole excitons as a function of well width LW for 
B= 0, B = 5 T and B = 15 T. It is obvious from the figure 
that, for a given magnetic field, the exciton binding 
energy decreases as LW increases. It takes place because 
with increasing LW the probability of finding the electron 
and hole in the same plane decreases. Increasing the 
magnetic field enhances the confinement of particles in 
the x–y plane. Therefore, the exciton binding energy 
increases with magnetic field. Similar behavior was 
reported by E. Kasapoglu et al. [8] for rectangular 
quantum wells.  

3.3. Electric field effect  

As an original application of the model, we have 
examined the case of a z-applied electric field in PQW. 
Solution of the problem is immediate and needs no 
further calculation. Indeed, computation is performed by 
using the same numerical program where the parameters 
were modified in the suitable way. In fact, it is easy to 
demonstrate that the additional term, in the Hamiltonian, 
arising from the applied electric field F, , leads 
to the following expression for p(a): 

heeFz ,±

( ) ( ) ([ δ−+δ+= apapapF 2
1
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 and p(a) given by Eq. (11). 

Hence, this solution consists of a simple translation of 
the parameter a by amount ±δ. In Fig. 3, for vanishing 
magnetic field, ground state binding energies of excitons 
in the presence of an electric field are plotted as a 
function of the well width for the same structures studied 
in the previous section for F = 20, 100 and 200 kV/cm. 
In this figure, one can observe that the effect of electric 

field is significant for all the well width values. This 
effect results in decreasing energy with a more important 
rate than that observed for . That indicates the 
degree of competition between the electric field effect 
and the confinement. For narrow wells the curvature of 

 is of parabolic shape, revealing a quadratic 
Stark shift. Similar trends have been observed for 
excitons in parabolic quantum dots [10]. One of the 
differences between these two systems is that in PQDs 
the slope of decreasing of  for narrow size is 
much larger than in PQWs even for weak field inten-
sities. Furthermore, in the case of PQWs, calculation 
shows a priori that, for sufficiently large electric field 
intensities (F > 200 kV/cm), the energy becomes very 
sensitive to the electric field effect even for narrow 
wells. It decreases abruptly when well width increases.   
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Fig. 1. Variations of the binding energy of 1s heavy hole 
exciton in GaAs-Ga0.7Al0.3As-GaAs (down) and CdTe-
Cd0.22Mn0.78Te (up) parabolic quantum wells on the well width 
in the absence of magnetic and electric fields. Triangles and 
squares refer to the results obtained by Rusin T.M. [6] using 
the same parameters. 
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Fig. 2. Binding energy, as a function of the well width, of 1s 
heavy hole exciton in GaAs-Ga0.7Al0.3As-GaAs parabolic 
quantum well. The calculation is done in the absence of 
electric field for three values of the magnetic field: B = 0, 
B = 5 T and 15 T, respectively, from bottom to top. 
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Fig. 3. Dependence of the binding energy of 1s exciton in the 
same structures as in Fig. 1 on the well width in the absence of 
magnetic field for three values of the electric field: 
F =20 kV/cm (solid line), 100 kV/cm (dotted line) and 
200 kV/cm (dashed line). 
 
 

3.4. Electric and magnetic field effects  

Fig. 4 illustrates the dependence of the binding energy of 
the exciton as a function of well width in the presence of 
electric and magnetic fields. In general, the binding 
energy decreases with increasing the well width. For 
well widths ranging from 100 up to 200 Å, the effects 
observed are those of the magnetic field and 
confinement, the electric field has no influence. The 
magnetic field does not change behavior of the curve of 
EB, but increases the energy values. For the well widths 
(Lw > 200 Å), the application of an electric field changes 
the rate of decrease of EB. This rate is almost constant 
for the well widths between 200 and 400 Å and increases 
significantly with the magnetic field for the well widths 
(Lw > 400 Å). We interpret this feature as a result of 
competition between the effect of electric field and the 
effect of confinement for 200 Å < Lw < 400 Å, and as a 
result of competition between the effect of electric field 
and magnetic field effect for Lw > 400 Å. 
 

4. Conclusion 

In conclusion, using a variational calculation in 2-band 
approximation, we have established a parameterized 
equation to be used for calculating exciton properties in 
2D-parabolic quantum wells. First, we have tested the 
validity of the equation by comparing our results with 
calculations available in the literature for GaAs-GaAlAs 
and CdTe-CdMnTe parabolic quantum wells. Starting 
with the success of this comparison, we have applied the 
model to calculate the effect of constant magnetic and 
electric fields parallel to the growth direction on the 
binding energy GaAs-GaAlAs parabolic quantum wells. 
And finally, let’s note that the perspectives of 
implementing the model developed in this paper remain 
widely open. Owing to its simplicity, it can be extended  
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Fig. 4. Variation of the binding energy of excitons HX (1s) in a 
PQW GaAs-Ga0.6Al0.4As as a function of the well width for 
different values of the magnetic field and two electric field 
values F = 10 kV/cm (dashed curves) and F = 20 kV/cm (solid 
curves). 
 
 
 
without difficulty to many types of applications such as 
exploring new potential profiles of the quantum wells, 
investigating higher excited states of excitons and 
calculating transitions energies and oscillator strength 
for these states, examining electric and magnetic field 
effects, etc. 
 
 

Appendix  

I) The entities )(λnI  involved in equation (10) are 
defined as follows [10]:  
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where represents the uncorrelated probability of 
finding electron and hole separated by a distance a [5], 
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)(λnI  integrals satisfy two interesting iterative relations 
which may be obtained as follows. Taking derivative of 
(A1) with respect to λ , gives 
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II) Substituting equations (6) and (7) into (5) and 
performing integration, the denominator in equation (5) 
is given by   

)(Fℑ=ψψ ,     (A6) 

where the operator ℑ  is defined as: 
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The numerator in equation (5) reduces to  
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and the entities  are given by PKJGF ,,,,
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In the same way, L, appearing in equation (10) is given 
by 
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