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1. Introduction

A virus is a small “semi-living” particle that is infectious 
agent able to replicate only inside living cells of 
organisms [1, 2]. The struggle against viruses has 
become up to date the most important problem of the 
living sciences. The characteristic dimensions of viruses 
are about few tens of nanometers. For example, the 
dimensions of adenoviruses are close to 70…90 nm, the 
dimension of AIDS virus reaches 100…120 nm, and 
dimensions of herpes viruses are approximately 170 nm. 
It means that the viruses are the objects of nanophysics, 
specifically, near-field physics [3-5]. As viruses are 
organic supramolecular structure, from the 
electrodynamics viewpoint it is characterized both by 
linear and nonlinear responses. Then, it should actively 
interact with the surfaces, especially, with the 
nanostructured ones. As it is well known [6], interaction 
between nanoparticles and nanostructured surfaces is 
related with local fields. The effect of local-field 
enhancement is a characteristic phenomena of nano-
optics [7]. The local-field enhancement can, for 
example, lead to amplification of interaction between the 
surface and the nanoparticle. This amplification can be 
observed for nanoparticles with dimensions close to 

characteristic linear dimensions of nanostructures at the 
surface. Then, the possibility for selective adsorption of 
nanoparticles (with the above linear dimensions) arises. 
This possibility is the main idea of using the 
nanostructured surface under special condition to rectify 
biological liquids (for example, blood) from the 
nanocomponents, including viruses. To clarify the idea, 
let us consider a system consisting of the metal surface 
at which the regular very long cylinders are situated. At 
this complicated surface, the surface plasmon-polaritons 
can be excited (Fig. 1). Due to interaction between the 
localized near the cylinders plasmons and surface 
plasmon-polaritons, the very complicated distribution of 
local field (along the OX) will be formed. This local-
field distribution is schematically shown by the insert in 
Fig. 1. If one would suppose that some small 
nanoparticles, the linear dimensions of which are close 
to or smaller than the diameter of these cylinders, will be 
adsorbed at the surface, one should take into account that 
adsorption will occur at the surface with periodically 
changed local field. Then, it can be realized the situation 
when the nanoparticles will adsorbed at the surface 
mainly within domains of strong local field. The 
interaction potential (its attractive part) between the 
nanoparticle and surface can be evaluated as [8]
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where )()(  p
ij is the effective susceptibility of the 

single nanoparticle, ),,,(  llIij rr – indirect part of 

electrodynamics Green function for the substrate, and k
– wave vector of the surface periodic structure. Then, 
supposing that the nanoparticles are shaped as ellipsoidal 

particles, the effective susceptibility ( ) ( )p
ij   can be 

written in the form [9, 10]
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are depolarization factors, ax, ay, az mean the semi-axes
of ellipsoid, εm is the dielectric permittivity of the
medium where the particle is embedded. The 
electrodynamics properties of the surface with the 
periodic structure can be described with the Green 

function ),,,(  llIij rr . The Green function in the so-

called k-p representation can be written in the form [11]

     (0), , , , , , , , ,lk lj jkI z z L z G d z     k k k G k , (4)

where ),,,()0( zzG jk k  is the electrodynamics Green 

function of the upper semi-infinite medium, and 

),,,,(  zLlj Gkk  is the local-field factor [3]. The local-

field factor has the form
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Fig. 1. Sketch of the system under consideration. The line 
qualitatively shows a spatial distribution of the interaction 
potential along the x-axis.

The next designations were used here: G is a 
smallest vector of the reciprocal 2D lattice,
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     ,i
jl jl

V

d e       Grr r  are the averaged effective 

susceptibilities of the nanocylinders,  ,jl r is the 

effective susceptibility of a single nanocylinder at the 
surface which dielectric properties are written by the 

Green function ( , , , )ijG z z k . All the Green 

functions ( , , , )ijG z z k  in Eqs. (5-7) are taken with 

z d  , where d is the radius of the nanocylinder. As 

the local-field factor  , , ,ljL z k k G  relates the 

local field ( , , )iE z k  and external long-range field 
(0) ( , , )iE z k , one can see that the strong local-field 

domains are determined by high values of local-field 
factor. Then, from Eqs. (1) and (4) one can see that 
domains of strong local fields correspond to the strong 
interaction energy between the nanoparticle and surface. 
The surface wave excitation and propagation means that 
the real part of determinant for the matrix 

 , , ,lj z  k k G  becomes equal to zero. So, it 

should be expected that small nanoparticles will be 
better adsorbed at the surface domain of the strong local 
field. On the other hand, it is well known that the strong 
local fields are formed at the edge of the nano-stripe 
structures at the surface, along which the surface 
electromagnetic waves propagate [12, 13]. If the 
nanostripes are situated alongside each other and not so 
far (several tens of nanometers), the small nanoparticles 
(like viruses) can be adsorbed at the edges of the stripes 
(at the edges of the nanocylinders). If one assumes that 
the blood, in which for instance AIDS viruses are 
presented, flows along the surface shown in Fig. 1, these 
viruses can be adsorbed by the structured surface, but 
blood organelles having larger linear dimensions could 
not be efficiently adsorbed at this surface.
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1. Introduction 

A virus is a small “semi-living” particle that is infectious agent able to replicate only inside living cells of organisms [1, 2]. The struggle against viruses has become up to date the most important problem of the living sciences. The characteristic dimensions of viruses are about few tens of nanometers. For example, the dimensions of adenoviruses are close to 70…90 nm, the dimension of AIDS virus reaches 100…120 nm, and dimensions of herpes viruses are approximately 170 nm. It means that the viruses are the objects of nanophysics, specifically, near-field physics [3-5]. As viruses are organic supramolecular structure, from the electrodynamics viewpoint it is characterized both by linear and nonlinear responses. Then, it should actively interact with the surfaces, especially, with the nanostructured ones. As it is well known [6], interaction between nanoparticles and nanostructured surfaces is related with local fields. The effect of local-field enhancement is a characteristic phenomena of nano-optics [7]. The local-field enhancement can, for example, lead to amplification of interaction between the surface and the nanoparticle. This amplification can be observed for nanoparticles with dimensions close to characteristic linear dimensions of nanostructures at the surface. Then, the possibility for selective adsorption of nanoparticles (with the above linear dimensions) arises. This possibility is the main idea of using the nanostructured surface under special condition to rectify biological liquids (for example, blood) from the nanocomponents, including viruses. To clarify the idea, let us consider a system consisting of the metal surface at which the regular very long cylinders are situated. At this complicated surface, the surface plasmon-polaritons can be excited (Fig. 1). Due to interaction between the localized near the cylinders plasmons and surface plasmon-polaritons, the very complicated distribution of local field (along the OX) will be formed. This local-field distribution is schematically shown by the insert in Fig. 1. If one would suppose that some small nanoparticles, the linear dimensions of which are close to or smaller than the diameter of these cylinders, will be adsorbed at the surface, one should take into account that adsorption will occur at the surface with periodically changed local field. Then, it can be realized the situation when the nanoparticles will adsorbed at the surface mainly within domains of strong local field. The interaction potential (its attractive part) between the nanoparticle and surface can be evaluated as [8]
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are depolarization factors, ax, ay, az mean the semi-axes of ellipsoid, εm is the dielectric permittivity of the medium where the particle is embedded. The electrodynamics properties of the surface with the periodic structure can be described with the Green function 
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. The Green function in the so-called k-p representation can be written in the form [11]
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Fig. 1. Sketch of the system under consideration. The line qualitatively shows a spatial distribution of the interaction potential along the x-axis.

The next designations were used here: G is a smallest vector of the reciprocal 2D lattice,
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 becomes equal to zero. So, it should be expected that small nanoparticles will be better adsorbed at the surface domain of the strong local field. On the other hand, it is well known that the strong local fields are formed at the edge of the nano-stripe structures at the surface, along which the surface electromagnetic waves propagate [12, 13]. If the nanostripes are situated alongside each other and not so far (several tens of nanometers), the small nanoparticles (like viruses) can be adsorbed at the edges of the stripes (at the edges of the nanocylinders). If one assumes that the blood, in which for instance AIDS viruses are presented, flows along the surface shown in Fig. 1, these viruses can be adsorbed by the structured surface, but blood organelles having larger linear dimensions could not be efficiently adsorbed at this surface.
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