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1. Introduction

Progress in electronics and IR devices demands more 
semiconductors and more detailed research of materials 
used for their elemental base development. CdTe and 
solid solutions based on it are widely used in radiation 
and X-ray detectors, IR devices and solar cells 
manufacture [1, 2]. That’s why formation of single
crystal surfaces of high quality is of great importance.

Most etchant compositions are elaborated for 
cadmium telluride polishing, anisotropic and selective 
etching and chemical cutting. But chemical treatment of
Cd1–xMnxTe solid solutions is still rare [3, 4]. That’s why 
complex researches of the process in semiconductors 
with different active environment are needed to
elaborate new etching compositions and for modification
of II-VI semiconductor material surfaces.

The process in Cd1–xMnxTe dissolutions in iodine 
containing organic solvents was researched in [3, 4]. 
The diffusion mechanism of chemical-dynamic 
polishing (CDP) with the rate 1.5 to 11 μm/min was 
ascertained. When iodine is educed from iodine acid in 
the process of its oxidation, an etching composition 
similar to iodine solutions in iodine acid is formed with 
the rate 11 to 16.5 μm/min for Cd1–xMnxTe solid 
solutions [5]. In [6], the dependence of the dissolution 
rate in H2O2–HI–tartaric acid etchants of Cd1–xMnxTe 

solid solutions was studied. The higher is the Mn 
content in solid solutions, the higher is the etching rate 
and the better is quality of the polished surface, and the 
polishing process goes with the rate 5 to 16 μm/min in 
accord with the diffusion mechanism. The authors [7] 
studied the CdTe and Cd1–xMnxTe polishing processes 
in H2O2–HI–lactic acid under hydrodynamic 
conditions. It was found that increasing the Mn content 
in solid solutions leads to a higher rate of 
semiconductor compounds etching and enlarged range 
of etching compositions with the polishing rate 4 to 
15 μm/min.

2. Methods of the experiment

The kinetics of CdTe and Cd1–xMnxTe single crystals 
dissolution in 30% H2O2–HI–citric acid aqueous 
solutions was studied under reproducible hydrodynamic 
conditions by using the method of the rotating disk and 
appropriate device for its practical implementation –
installation for CDP. During interaction of hydrogen 
peroxide with iodine acid, free iodine is educed, which
oxidizes semiconductors material, and citric acid 
facilitates formation of aqueous solutions of complex 
compounds:

H2O2 + 2HI = I2 + 2H2O. (1)
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Fig. 1. The equal etching rate surfaces (μm/min) of CdTe (а), Cd0.7Mn0.3Te (b), Cd0.57Mn0.43Te (c) and Cd0.5Mn0.5Te (d) (T = 
297 K, γ = 82 min–1) in the aqueous solutions of the НІ–Н2О2–citric acid system in the ABC region and the regions of polishing 
(І), selective (ІІ) and unpolishing solutions (ІІІ) at the volume ratio of Н2О2:НІ:citric acid in the А, В, С vertexes: А – 2:98:0; В –
2:38:60; С –10:90:0.

For the investigations, we cut from the ingots the 
wafers with the dimensions [~5×7×(1.4-2.0) mm]. The 
wafers surfaces were polished before being etched by the 
aqueous suspensions of M10, M5 and M1 abrasive 
powders one after another, then the 50…100-μm layer, 
damaged during mechanical processing, was taken off 
using the etching composition that was used for 
dissolving. The samples were attached to silica
substrates with pizzeine and mounted into the rotating 
disc holder. The dissolution rate was measured by 
reducing the sample thickness with a watch indicator 
2 MIGI with the accuracy within ±0.5 μm. The etching 
time was chosen so that the process provided dissolution 
of at least 10…15 μm of material. Three samples were 
dissolved simultaneously. The difference in 
semiconductor thickness didn’t exceed 5% for each 
semiconductor. The samples were rinsed first with 0.5 M 
sodium thiosulphate solution, then with distilled water,
and finally they were dried in the stream of dry air.

To prepare etching compositions, 30% H2O2, 43% 
HI and 27% citric acid were used. Before etching, all the
solutions were kept in thermostat for 60…90 min to 
reach a chemical balance between etching solution 
components.

The samples microstructure was researched with a 
universal Zeiss Jenatach-inspection microscope with
video camera with 25…1600 magnification and 
Leitz/laborlux 12HL one with Leica DFC 3200 video 
camera with 50…1500 magnification. The maximum 
diameter for observation was 200…250 μm. The plate 
surface microrelief and structure after etching were 
measured using the mechanic contact method with the
DECTAK 3030 auto II profile meter.

3. Results and the discussion

Earlier [8], similar investigations were made, but most of 
the proposed solutions couldn’t be used for polishing 
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with a controlled rate. That’s why iodine acid oxidizer 
H2O2 of lower concentration was chosen. As a result, we 
got a low iodine concentration in iodine acid solutions
and broader range of solutions for polishing Cd1–xMnxTe 
single crystals with a low rate of dissolution (Fig. 1). 
CdTe, Cd0.7Mn0.3Te, Cd0.53Mn0.47Te, Cd0.5Mn0.5Te 
dissolution rate concentration dependences in H2O2–HI–
citric acid solutions were constructed using the 
mathematical simulation of the experiments [9] at T = 
297±0.5 K and the disk rotation speed γ = 82 min–1.
These dependences are characterized by the similar 
features.

The region of the solutions with polishing 
properties (I) occupies almost the whole range of the 
investigated solutions with the polishing rate 4 to 
16 μm/min. The maximum etching rate 
(14…16 μm/min) for Cd1–xMnxTe was observed at 
6 vol.% of H2O2 in the solution. The increase of 
hydrogen peroxide leads to formation of excess free 
iodine and thus to surface deterioration – round etching 
dots are formed on the surface (region II), or it is 
covered with grey thin coating (region III), and 
dissolution rates decrease to 2…6 μm/min.

Introduction of citric acid slows down the crystal 
etching rate. The etchants containing 50 to 60 vol.% of 
citric acid form round dots on semiconductor surfaces
(II). At the increase of the Mn content in the Cd1–xMnxTe
solid solution up to 30 at.%, the dissolution rate is 
slower in comparison with cadmium telluride
dissolution; and at the Mn content higher than 30 at.%,
the etching rates are higher as compared to CdTe
dissolution. In all the cases, the increase of Mn in 
Cd1–xMnxTe leads to higher quality of semiconductor 
surfaces and enlarges the region of solutions with 
polishing properties, which is, perhaps, related with Mn 
higher activity (lower electrode potential) and different 
microhardness of the crystals.

For polishing the mentioned above semiconductors,
the solutions of H2O2–HI–citric acid with (2…6) H2O2: 
(48…98) HI: (0…50) C6H8O7 vol.% ratio can be used.

In order to study the process of dissolution of the 
investigated semiconductor materials in etching 
compositions of H2O2–HI–citric acid, we performed the 
kinetic research and plotted the dependences of the 
dissolution rate (ν) in the coordinates v–1  γ–1/2 at 
T = 293 K as well as dependences of the etchant 
temperature in the coordinates lnv – 1/T in the polishing 
solution containing (in vol.%) 4H2O2 + 81HI +
15C6H8O7. As seen from Fig. 2a, for all the investigated 
materials, the suitable lines can be extrapolated to the 
origin, which indicates the diffusion mechanism of 
dissolution inherent to these semiconductors.
Investigation of the temperature dependences of the 
dissolution rate in the mentioned above materials in the 
same etching solution (Fig. 2b) revealed that the 
apparent activation energy did not exceed Ea = 
30 kJ/mol (Table). It confirms the conclusion that the 
limiting stage in the dissolution process of the 
investigated semiconductor materials is diffusion [10].
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Fig. 2. Dependences of the CdTe (1), Cd0.7Mn0.3Te (2), 
Cd0.57Mn0.43Te (3) and Cd0.5Mn0.5Te (4)  etching rates on the 
speed of the disc rotation (Т = 293 K) (a) and temperature 
(γ = 82 min–1) (b) in the solution containing 4 vol.% Н2О2 + 
81 vol.% НІ + 15 vol.% С6H8O7.

Using the 46% aqueous solution of hydrogen 
peroxide as HI oxidizer leads to the limitation of the 
polishing process by both diffusion and kinetic stages [8] 
due to saturation of the forming solution with elemental 
iodine. When diluting the oxidizer by adding H2O2, the 
quantity of iodine decreases and the polishing process
goes on due to the diffusion mechanism.

Thus, the results of the experimental researches
helped to obtain the etching compositions that can be
used for polishing and selective etching of CdTe, 
Cd0.7Mn0.3Te, Cd0.53Mn0.47Te and Cd0.5Mn0.5Te by using
the aqueous solutions of the 30% H2O2–HI–citric acid
system.

Table. Apparent activation energy (Еа) and logarithm of 
the pre-exponential factor (ln СЕ) of the CdTe, 
Cd0.7Mn0.3Te, Cd0.57Mn0.43Te and Cd0.5Mn0.5Te dissolution 
processes in the etchant composition containing 4 vol.% 
Н2О2 + 81 vol.% НІ + 15 vol.% citric acid (γ = 82 min–1).

Semiconductor Ea, kJ/mol ln CE

CdTe 13.36 2.044

Cd0.7Mn0.3Te 12.99 2.001

Cd0.57Mn0.43Te 14.24 2.200

Cd0.5Mn0.5Te 17.22 2.241
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4. Conclusion

The physico-chemical interaction of the single crystals
of the CdTe and Cd1–xMnxTe solid solution with H2O2–
HI–citric acid etching compositions has been
established. Using mathematical simulation, the “etchant 
concentration – etching rate” diagrams have been 
plotted where the equal rate dissolution surfaces are 
shown and the solutions with polishing, selective and 
unpolishing properties are indicated. 

It has been found that solutions enriched with 
iodine acid are characterized by the highest etching 
rates. Most of the investigated polishing solutions can be 
used for CDP of CdTe and Cd1–xMnxTe solid solutions. 
The polishing rates are slower and can be controlled. In 
all the cases, the higher organic acid contents in etching 
solutions lead to the slower semiconductor dissolution 
rates (the etching rate diminishes from 16 down to 
4 μm/min). It has been shown that all polishing solutions 
are characterized by the diffusion limitation. The 
investigated etching compositions of the H2O2–HI–citric 
acid system can be used for Cd1–xMnxTe and CdTe 
single crystals.
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1. Introduction 

Progress in electronics and IR devices demands more semiconductors and more detailed research of materials used for their elemental base development. CdTe and solid solutions based on it are widely used in radiation and X-ray detectors, IR devices and solar cells manufacture [1, 2]. That’s why formation of single crystal surfaces of high quality is of great importance.

Most etchant compositions are elaborated for cadmium telluride polishing, anisotropic and selective etching and chemical cutting. But chemical treatment of Cd1–xMnxTe solid solutions is still rare [3, 4]. That’s why complex researches of the process in semiconductors with different active environment are needed to elaborate new etching compositions and for modification of II-VI semiconductor material surfaces.


The process in Cd1–xMnxTe dissolutions in iodine containing organic solvents was researched in [3, 4]. The diffusion mechanism of chemical-dynamic polishing (CDP) with the rate 1.5 to 11 μm/min was ascertained. When iodine is educed from iodine acid in the process of its oxidation, an etching composition similar to iodine solutions in iodine acid is formed with the rate 11 to 16.5 μm/min for Cd1–xMnxTe solid solutions [5]. In [6], the dependence of the dissolution rate in H2O2–HI–tartaric acid etchants of Cd1–xMnxTe solid solutions was studied. The higher is the Mn content in solid solutions, the higher is the etching rate and the better is quality of the polished surface, and the polishing process goes with the rate 5 to 16 μm/min in accord with the diffusion mechanism. The authors [7] studied the CdTe and Cd1–xMnxTe polishing processes in H2O2–HI–lactic acid under hydrodynamic conditions. It was found that increasing the Mn content in solid solutions leads to a higher rate of semiconductor compounds etching and enlarged range of etching compositions with the polishing rate 4 to 15 μm/min.


2. Methods of the experiment


The kinetics of CdTe and Cd1–xMnxTe single crystals dissolution in 30% H2O2–HI–citric acid aqueous solutions was studied under reproducible hydrodynamic conditions by using the method of the rotating disk and appropriate device for its practical implementation – installation for CDP. During interaction of hydrogen peroxide with iodine acid, free iodine is educed, which oxidizes semiconductors material, and citric acid facilitates formation of aqueous solutions of complex compounds:

H2O2 + 2HI = I2 + 2H2O.
(1)


For the investigations, we cut from the ingots the wafers with the dimensions [~5×7×(1.4-2.0) mm]. The wafers surfaces were polished before being etched by the aqueous suspensions of M10, M5 and M1 abrasive powders one after another, then the 50…100-μm layer, damaged during mechanical processing, was taken off using the etching composition that was used for dissolving. The samples were attached to silica substrates with pizzeine and mounted into the rotating disc holder. The dissolution rate was measured by reducing the sample thickness with a watch indicator 2 MIGI with the accuracy within ±0.5 μm. The etching time was chosen so that the process provided dissolution of at least 10…15 μm of material. Three samples were dissolved simultaneously. The difference in semiconductor thickness didn’t exceed 5% for each semiconductor. The samples were rinsed first with 0.5 M sodium thiosulphate solution, then with distilled water, and finally they were dried in the stream of dry air.

To prepare etching compositions, 30% H2O2, 43% HI and 27% citric acid were used. Before etching, all the solutions were kept in thermostat for 60…90 min to reach a chemical balance between etching solution components.

[image: image3.png]The samples microstructure was researched with a universal Zeiss Jenatach-inspection microscope with video camera with 25…1600 magnification and Leitz/laborlux 12HL one with Leica DFC 3200 video camera with 50…1500 magnification. The maximum diameter for observation was 200…250 μm. The plate surface microrelief and structure after etching were measured using the mechanic contact method with the DECTAK 3030 auto II profile meter.


3. Results and the discussion


Earlier [8], similar investigations were made, but most of the proposed solutions couldn’t be used for polishing with a controlled rate. That’s why iodine acid oxidizer H2O2 of lower concentration was chosen. As a result, we got a low iodine concentration in iodine acid solutions and broader range of solutions for polishing Cd1–xMnxTe single crystals with a low rate of dissolution (Fig. 1). CdTe, Cd0.7Mn0.3Te, Cd0.53Mn0.47Te, Cd0.5Mn0.5Te dissolution rate concentration dependences in H2O2–HI–citric acid solutions were constructed using the mathematical simulation of the experiments [9] at T = 297±0.5 K and the disk rotation speed γ = 82 min–1. These dependences are characterized by the similar features.


The region of the solutions with polishing properties (I) occupies almost the whole range of the investigated solutions with the polishing rate 4 to 16 μm/min. The maximum etching rate (14…16 μm/min) for Cd1–xMnxTe was observed at 6 vol.% of H2O2 in the solution. The increase of hydrogen peroxide leads to formation of excess free iodine and thus to surface deterioration – round etching dots are formed on the surface (region II), or it is covered with grey thin coating (region III), and dissolution rates decrease to 2…6 μm/min.


Introduction of citric acid slows down the crystal etching rate. The etchants containing 50 to 60 vol.% of citric acid form round dots on semiconductor surfaces (II). At the increase of the Mn content in the Cd1–xMnxTe solid solution up to 30 at.%, the dissolution rate is slower in comparison with cadmium telluride dissolution; and at the Mn content higher than 30 at.%, the etching rates are higher as compared to CdTe dissolution. In all the cases, the increase of Mn in 
Cd1–xMnxTe leads to higher quality of semiconductor surfaces and enlarges the region of solutions with polishing properties, which is, perhaps, related with Mn higher activity (lower electrode potential) and different microhardness of the crystals.

For polishing the mentioned above semiconductors, the solutions of H2O2–HI–citric acid with (2…6) H2O2: (48…98) HI: (0…50) C6H8O7 vol.% ratio can be used.

In order to study the process of dissolution of the investigated semiconductor materials in etching compositions of H2O2–HI–citric acid, we performed the kinetic research and plotted the dependences of the dissolution rate (ν) in the coordinates v–1 ( γ–1/2 at T = 293 K as well as dependences of the etchant temperature in the coordinates lnv – 1/T in the polishing solution containing (in vol.%) 4H2O2 + 81HI + 15C6H8O7. As seen from Fig. 2a, for all the investigated materials, the suitable lines can be extrapolated to the origin, which indicates the diffusion mechanism of dissolution inherent to these semiconductors. Investigation of the temperature dependences of the dissolution rate in the mentioned above materials in the same etching solution (Fig. 2b) revealed that the apparent activation energy did not exceed Ea = 30 kJ/mol (Table). It confirms the conclusion that the limiting stage in the dissolution process of the investigated semiconductor materials is diffusion [10].
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Fig. 2. Dependences of the CdTe (1), Cd0.7Mn0.3Te (2), Cd0.57Mn0.43Te (3) and Cd0.5Mn0.5Te (4)  etching rates on the speed of the disc rotation (Т = 293 K) (a) and temperature (γ = 82 min–1) (b) in the solution containing 4 vol.% Н2О2 + 81 vol.% НІ + 15 vol.% С6H8O7.


Using the 46% aqueous solution of hydrogen peroxide as HI oxidizer leads to the limitation of the polishing process by both diffusion and kinetic stages [8] due to saturation of the forming solution with elemental iodine. When diluting the oxidizer by adding H2O2, the quantity of iodine decreases and the polishing process goes on due to the diffusion mechanism.


Thus, the results of the experimental researches helped to obtain the etching compositions that can be used for polishing and selective etching of CdTe, Cd0.7Mn0.3Te, Cd0.53Mn0.47Te and Cd0.5Mn0.5Te by using the aqueous solutions of the 30% H2O2–HI–citric acid system.

Table. Apparent activation energy (Еа) and logarithm of the pre-exponential factor (ln СЕ) of the CdTe, Cd0.7Mn0.3Te, Cd0.57Mn0.43Te and Cd0.5Mn0.5Te dissolution processes in the etchant composition containing 4 vol.% Н2О2 + 81 vol.% НІ + 15 vol.% citric acid (γ = 82 min–1).

		Semiconductor

		Ea, kJ/mol

		ln CE



		CdTe

		13.36

		2.044



		Cd0.7Mn0.3Te

		12.99

		2.001



		Cd0.57Mn0.43Te

		14.24

		2.200



		Cd0.5Mn0.5Te

		17.22

		2.241





4. Conclusion


The physico-chemical interaction of the single crystals of the CdTe and Cd1–xMnxTe solid solution with H2O2–HI–citric acid etching compositions has been established. Using mathematical simulation, the “etchant concentration – etching rate” diagrams have been plotted where the equal rate dissolution surfaces are shown and the solutions with polishing, selective and unpolishing properties are indicated. 


It has been found that solutions enriched with iodine acid are characterized by the highest etching rates. Most of the investigated polishing solutions can be used for CDP of CdTe and Cd1–xMnxTe solid solutions. The polishing rates are slower and can be controlled. In all the cases, the higher organic acid contents in etching solutions lead to the slower semiconductor dissolution rates (the etching rate diminishes from 16 down to 4 μm/min). It has been shown that all polishing solutions are characterized by the diffusion limitation. The investigated etching compositions of the H2O2–HI–citric acid system can be used for Cd1–xMnxTe and CdTe single crystals.
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Fig. 1. The equal etching rate surfaces (μm/min) of CdTe (а), Cd0.7Mn0.3Te (b), Cd0.57Mn0.43Te (c) and Cd0.5Mn0.5Te (d) (T = 297 K, γ = 82 min–1) in the aqueous solutions of the НІ–Н2О2–citric acid system in the ABC region and the regions of polishing (І), selective (ІІ) and unpolishing solutions (ІІІ) at the volume ratio of Н2О2:НІ:citric acid in the А, В, С vertexes: А – 2:98:0; В – 2:38:60; С –10:90:0.
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