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Abstract. In the paper we adopt the analytical Landau-Ginzburg-Devonshire theory to 
describe the ferroelectric domain structure formation using Scanning Probe Microscopy. 
We calculate the effective local piezoresponse of the domain structure within the 
decoupling approximation using the conventional relation between piezoelectric tensor 
components and the spontaneous polarization vector. The depth profile of the 
polarization distribution was derived from the nonlinear Landau-Ginzburg-Devonshire 
equation. We demonstrate that depending on the material parameters such as the intrinsic 
domain wall width and probe apex geometry, the shape of the nucleating nanodomains 
induced by the probe can be either oblate or prolate. The derived analytical expressions 
for the polarization redistribution caused by the biased probe are valid for both first and 
second order ferroelectrics.  
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1. Overview 

Nanoscale observations of the ferroelectric domain 
structure and its evolution in external fields have 
allowed us to obtain direct information on the static wall 
structure formed after field application, dynamic 
avalanche time and size distributions, and pinning on 
individual defects [1-4]. 

The emergence of the Scanning Probe Microscopy 
(SPM) based techniques has opened the way for 
inducing a concentrated electric field within a nanoscale 
volume of material. Combined with electromechanical 
response detection, this Piezoresponse Force Microscopy 
(PFM) approach has been broadly applied to domain 
imaging and polarization patterning. Piezoresponse force 
spectroscopy was used to study polarization switching 
for small volumes. Experimental studies have been 
complemented by extensive theoretical analysis of 
domain nucleation mechanisms [5-9] in the 
approximation of “rigid” spontaneous polarization (+PS 
or −PS inside/outside the domains) assuming atomically-
sharp (mathematically infinitely thin) domain walls.  

Intrinsic domain wall width is a fundamental 
parameter that reflects bulk ferroelectric properties and 
governs the performance of ferroelectric memory devices. 
Recently [10] we derived closed-form analytical 
expressions for vertical and lateral Piezoelectric Force 
Microscopy (PFM) profiles of a single ferroelectric 
domain wall for the conical and disc models of the tip, 
beyond point charge and sphere approximations. The 
analysis takes into account the finite intrinsic width of the 
domain wall and dielectric anisotropy of the material. 
These analytical expressions provide insight into the 
mechanisms of PFM image formation and can be used for 
quantitative analysis of the PFM domain wall profiles. 

In Ref. [11] we consider the interaction of 
ferroelectric 180o-domain wall polarization with a 
strongly inhomogeneous electric field of biased force 
microscope probe within LGD thermodynamic approach 
for the second order ferroelectrics. The analysis is 
performed within the framework of the Landau-
Ginzburg-Devonshire (LGD) theory, avoiding the typical 
limitation of rigid ferroelectric (i.e. infinitely thin 
domain wall) approximation. Equilibrium shape of the 
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initially flat domain wall boundary bends, attracts or 
repulses from the probe apex, depending on the sign and 
value of the applied bias. For large tip-wall separations, 
the probe-induced domain nucleation is possible. The 
approximate analytical expressions for the equilibrium 
polarization distribution are derived using the direct 
variational method. The expressions provide insight into 
how the surface polarization distribution depends on the 
wall’s finite-width, correlation and depolarization 
effects, electrostatic potential distribution of the probe 
and ferroelectric material parameters.  

In the paper we adopt the analytical LGD theory to 
describe the domain structure formation using SPM. We 
calculate the effective local piezoresponse and study the 
depth profile of the polarization distribution. We 
demonstrate that depending on the material parameters 
such as the intrinsic domain wall width, the shape of the 
equilibrium domains, induced by the probe, can be either 
oblate or prolate. The derived analytical expressions are 
valid for both first and second order ferroelectrics. 

2. The problem statement 

The resolution and probed volume in PFM is determined 
by the structure of electric and elastic fields inside the 
material. In general, the calculation of the fields in the 
material requires the solution to a coupled problem, 
which is currently available only for a transversally 
isotropic case and is also limited to the electric field 
produced in the contact area. 

Here we use a simplified approach suggested by 
Felten et al. [12] and Scrymgeour and Gopalan [13] that 
is based on the solution of a decoupled 
electromechanical problem. In this case, the electric field 
in the material is calculated using a rigid electrostatic 
model (no piezoelectric coupling); the strain or stress 
field is calculated using constitutive relations for a 
piezoelectric solid, and the displacement field is 
evaluated using an appropriate Green’s function for an 
isotropic or anisotropic solid. Hereinafter, we consider 
semi-infinite ferroelectrics. 

In decoupled approximation, the surface 
displacement ( )yr,iu  at location y induced by the biased 
probe at position r  is: 
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Where the electric field ( ) kk xE ∂ϕ∂−=r  is 

produced by the tip in the point ( )zyx ,,=r  of the 
sample, ( )rkljd  are the stress piezoelectric tensor 
components representing material properties (ideal 
image), kjmnc  are stiffness tensor components. Coordinate 

systems x and ξ are linked to the probe apex, coordinates 
( )zyy ,, 21=y  is the probe apex position in the sample 

coordinate system y. For most inorganic ferroelectrics, the 
elastic properties are weakly dependent on orientation. 
Hence, material can be approximated as elastically 
isotropic. The corresponding Green’s tensor ( )ξ,rijG  for 
an elastically isotropic half-plane is given by Lur’e [14] 
and Landau and Lifshitz [15]. 

If the sample is uniform on the scale of the 
penetration depth of electric field, i.e., 

( ) ( )yxdczyxdc mnkjlmnmnkjlmn ,,, ≈ , vertical surface 
displacement below the tip, i.e., vertical PFM signal, can 
be rewritten as  
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(2) 
i.e., as a convolution of a function describing the spatial 
distribution of material properties, ( )rmnkd , and a 
resolution function related to probe parameters (integral 
in parenthesis).  

The spontaneous polarization ( )r3P  of 
ferroelectrics is directed along the polar axis, z. The 
sample is dielectrically isotropic in transverse directions, 
i.e. permittivities 2211 ε=ε , while 33ε  value may be 
different. The dependence of in-plane polarization 
components on an electric field is linearized as  

( ) 2,11102,1 )(1 xP ∂ϕ∂−εε−≈ r . The conventional 
relation between piezoelectric coefficients 

mjklmilijk PQd εε= 02  in Voigth notation acquire the 
explicit form:  

31133033 2 PQd εε= ,  31233031 2 PQd εε= , 

34411015 2 PQd εε= .  (3) 
Where ijQ  is electrostriction tensor components in 

Voigt notation. 
 The problem for quasi-static electrostatic 

potential )(rϕ  can be written as: 

⎪
⎩

⎪
⎨

⎧

=∞→ϕ==ϕ

∂
∂

ε
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

ϕ∂
+

∂

ϕ∂
ε+

∂

ϕ∂
ε

.0),,(,),()0,,(

,1 3

0
2

2

2

2

112

2

33

zyxyxVzyx

z
P

yxz

e

b
 (4) 

Here we introduced dielectric permittivity of back-
ground [16] or reference state [17] as b

33ε . Typically 
b
33ε ≤10; 0ε  is the universal dielectric constant. 

The electrostatic potential )(rϕ  includes the effects 
of the depolarization field created by polarization bound 
charges. The perfect screening of a depolarization field 
outside the sample is realized by the ambient screening 
charges, as shown in Fig. 1. 
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Fig. 1. Schematics of the domain nucleation near ferroelectric 
180o-domain wall boundary. The nucleation is caused by the 
strong inhomogeneous electric field of the biased SPM probe 
in contact with the sample surface.  

 
The potential distribution produced by the SPM 

probe on the surface can be approximated as 
222),( dyxdVyxVe ++≈ , where V is the applied 

bias, d is the effective distance determined by the probe 
geometry [8]. The potential is normalized assuming the 
condition of perfect electrical contact with the surface, 

VVe ≈)0,0( . In the case of a local point charge model, 
the probe is represented by a single charge 

( ) κε+κεπε= ee VRQ 002  located at distance 
κε= 0Rd e  for a spherical tip apex with curvature R0 

( 1133εε≈κ  is the effective dielectric constant 

determined by the “full” dielectric permittivity 33ε  in z-
direction, eε  is ambient dielectric constant), or 

π= 02 Rd  for a flattened tip represented by a disk of 
radius R0 in contact with the sample surface. In any case, 

one should take into account that ( ) V
d

Q

e
=

ε+κπε02
.  

In the framework of LGD phenomenology, in the 
absence of pinning centers or for weak pinning of 
viscous friction type the equilibrium polarization 
distribution can be found as the solution of the nonlinear 
equation: 
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The gradient terms 0>ξ  and 0>η , expansion 
coefficients 0>δ , while 0<β  for the first order phase 
transitions or 0>β  for the second order ones. 
Coefficient α < 0 in ferroelectric phase. Rigorously, 
coefficient α should be taken as renormalized by the 
elastic stress [18, 19]. 3E  is electric field. 

The corresponding Fourier-image on transverse 
coordinates {x,y} of electric field normal component 

( ) zzE ∂ϕ∂−= ~,~
3 k  is the sum of external (e) and 

depolarization (d) fields [11]: 
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Here 1133 εε=γ b
b  is the “bare” dielectric 

anisotropy factor, { }21,kk=k  is a spatial wave-vector, 

its absolute value 2
2

2
1 kkk += , h is the sample 

thickness. The Fourier-image of polarization is 
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The Fourier-image of the electric field potential at the 
sample surface is ( ) )(~~ kk wVVe = , where 

( )dk
k
dw −= exp)(~ k . For a transversally homogeneous 

media, 133 =εb  and static case Eq. (6b) reduces to the 
expression for a depolarization field obtained by 
Kretschmer and Binder [20]. 

 For the semi-infinite sample considered 
hereinafter, initial and boundary conditions for 
polarization are the following 

),()0,( 03 xPtP =≤r  0)0(3 ==
∂
∂ z

z
P .  (7) 

The condition 03 =∂∂ zP  corresponds to the 
perfect atomic surface structure without defects or a 
damaged layer and so one could neglect the surface 
energy contribution. Polarization distribution ( )xP0  
satisfies Eq. (5) at zero external bias, Ve = 0. For the first 
order ferroelectrics the 180o-domain wall profile 
unperturbed by the probe is ( ) =xP0  
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 where the correlation length is 
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( )42 53 SS PPL δ+β+αη=⊥  and the spontaneous 

polarization δ⎟
⎠
⎞⎜

⎝
⎛ β−αδ−β= 2422

SP  [21]. For the 

second order ferroelectrics the solution of equation 

( ) ( ) ( ) 02
0

2
3

00 =
∂
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η−β+α

x
xPxPxP  for the initial flat 

domain wall profile positioned at x = x0 is 
( ) ( )( )⊥−= LxxPxP S 2tanh 00 , where the correlation 

length is αη−=⊥ 2L , and the spontaneous 

polarization is βα−=2
SP .  

3. Polarization re-distribution: domain nucleation 
and wall bending 

To obtain the spatial re-distribution of polarization an 
arbitrary bias we used the direct variational method [11]. 
In this method, k-dependent (i.e. coordinate-dependent) 
part of linearized solution (5) was used as the trial 
function in the corresponding free energy functional, the 
bias-dependent amplitude (in volts) was treated as a 
variational parameter PV (like scalar order parameter in 
GLD). Allowing for the radial symmetry of the 
normalized probe potential ( ) ( ) kdkdkw −= exp~ , we 
obtained the dependence of polarization in the form [11]: 
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The characteristic equation for eigenvalues )(ks  is bi-

quadratic, namely ( ) ( )( )222
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At the sample surface, z = 0, Eq. (8), can be simplified as: 

( ) ( ) ( )( )
( )( ) ( )S

b
S

bb

VS

kkk

VPkwkkrJkkd
xPyxP

α−ηεξεε+αε−ηε+ξεε+

⋅α−ηεε⋅
+=

−∞

∫
2221

)()(~2
0,,

2
33110333311

2
0

212
0011

2

0
03

. For particular case ∞→ξ  we obtained that 01 →s  and so  

( ) ( ) ( ) ( )
( )( )

( )

( ) ( )
( )( ) .

2

exp)(~

~
2

exp)(~

12
2

10

0

2

0
2
1

2
2

2

120

0

2

03

ssk

zskwkJ
kdkP

xP
ssk

zsskwkJ
kdkPxPP

Sb
V

Sb
V

+α−ηξ

−ρ

γ
+

+
−α−ηξ

−ρ

γ
+≈

∫

∫
∞

∞

r
 

small k values ( )
ξεε

εεα−+
≈ b

b
Ss
330

330
1

21  and 

( )
( ) b

S

Sks
330

011
2 21

2
εεα−+

α−εε
≈ .  

For typical ferroelectric material parameters the 
inequality 12 330 <<αεε b  is valid, since b

33ε ≤10, and so 
the integration in Eq. (8) can be performed for several 
particular cases: 
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Here parameter 22 yx +=ρ  has the meaning of 

radial coordinate, factor 
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Under the absence of domain wall pinning, the 
equilibrium domain wall boundary xDW(y, z) can be 
determined from the condition P3(xDW y, z) = 0. Let us 
postulate that the threshold (or critical) positive and 
negative biases ±

thV  are required to move the domain 
wall boundary by overcoming the effect of the lattice 
constant discreteness a. The presence of lattice pinning 
leads to the appearance of the threshold bias ±

thV . With 
the presence of lattice pinning and defects, the amplitude 
PV can be obtained from equations: 
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 Positive and negative threshold bias (solid and 
dashed curves respectively), calculated numerically, via 
effective distance d are shown in Fig. 2 for LiNbO3 
material parameters and ξ << –2αd2. 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 1. P. 116-124. 

 

 

© 2009, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

120 

 

Distance d (nm) 

Th
re

sh
ol

d 
bi

as
⎥V

th
⎢(

V
)  

10 30 50 

0 

5 

10 

x0=6 nm 

x0=1 nm 

x0=10 nm 

 
Fig. 2. Absolute values of positive and negative threshold bias 
(solid and dashed curves, respectively) via effective distance d 

for LiNbO3 material parameters (ε11 = 84, ε33 = 30, 3ε33 ≤b , 
α = −2⋅109, η = ξ = 10−9 in SI units (i.e. L⊥ = Lz = 0.5 nm), Ps = 
0.75 C/m2) and different x0 values (labels near the curves). 

 Depth profiles of polarization distribution 
perturbed by the biased probe can be calculated from 
Eqs. (8)-(9), where the bias dependence )(VPV  is given 
by nonlinear Eq. (10). The corresponding depth profiles 
are shown in Fig. 3. 

 For chosen material constants, effective distance 
d = 5nm and 22 dα−<<ξ  characteristic depth zd of 
domain wall bending is also about 5 nm, since dz Sγ~  
as anticipated from the first of Eqs. (9). For a chosen 
polarization distribution the wall attraction to the probe 
corresponds to positive biases, while the domain wall 
repulsion from the probe takes place at negative biases. 

 The domain wall boundary bending by biased 
probe is observed at distances dLx +< ⊥0 , while far 

from the wall at distances dLx +> ⊥0  the probe-
induced domain formation appears at bias more than 
coercive one [11].  
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Fig. 3. Depth profiles of the domain wall affected by biased probe. (a) Lateral cross-sections at different depth, marked 

near curves in nm. (b) Vertical section for different bias (marked in figure in V) at a fixed distance between wall and probe 
x0 = 0. (c, d) The vertical section for different distances between wall and probe (marked in figure in nm) at a fixed voltage V = 
10 V (c) and V = –10 V (d). Material parameters for LiNbO3 are the same as in Fig. 2. Effective distance d = 5 nm. 
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 The profiles of the probe-induced domain 
nucleation far from the wall and near the wall, calculated 
under the condition of small longitudinal gradient 
coefficient 22 dα−<<ξ , are shown in Figs. 4. For 
chosen material constants, the length of the domain 

dl Sγ~  is determined by the product of anisotropy 

factor Sγ  on effective charge-surface separation d, as 
anticipated from the first of Eq. (9). It is clear that 
nucleated domain is oblate (its radius r>l) for 1<γS  
and prolate (r < l) for 1>γS . 

 Under the condition of high longitudinal 
gradient coefficient 22 dα−>>ξ , the length of the 
domain is determined by depolarization length 

ξεε b
330 , as anticipated from the second of Eq. (9). It is 

clear that nucleated domain is prolate (its radius r << l). 

Note that the small longitudinal correlation length 

α−
ξ

<<
α−ε

ξ
= − 221

0
Cl  can appear due to the 

depolarization field that strongly suppresses any 
fluctuations of the order parameter in polar direction z. 
However, the experimentally measurable intrinsic 
domain wall width αξ−= 2zL  in z-direction 
typically appeared rather high in lithium niobate, which 
is possible only at a high longitudinal gradient 
coefficient ξ. Note that the depolarization field 
drastically decreases with an increase in the domain wall 
width. Namely, Gopalan et al. [22] recently have shown 
that an increase in the anti-parallel counter domain wall 
width from 0.5 nm to 2-3 nm lead to a decrease in the 
coercive field on 2-3 orders of magnitude. The 
inequality ξ >> η is necessary for prolate domain 
appearance. 

  

-5 0 5 

4 

2 

0 

1 
2 
3 
4 

(a)

 

-5 0 5 

4 

2 

0 

1
2 3

4

x  (nm) 

z  
(n

m
) 

(d)(c) 

(b)

x  (nm) 

z  
(n

m
) 

x  (nm) x  (nm) 

Probe 

 

-5 0 5 

15 

10 

5 

0 

12
3

4

 

-5 0 5 

15 

10 

5 

0 
1

2
3

4

Probe

Probe 
Probe 

L⊥ 
increase 

L⊥ 
increase

L⊥ 
increase L⊥ 

increase 

 
Fig. 4. Vertical cross-sections of probe-induced domain formation near the domain wall for different distances from initial flat 
wall x0 = ∞, 15, 5, 0 nm (panels (a), (b), (c) and (d), respectively). Curves 1, 2, 3, 4 correspond to different values of L⊥ = 0, 

0.5, 1, 2 nm. PZT40/60 parameters: ε11 = 497, ε33 = 197, 10ε33 ≤
b , α = −1.66⋅108 m/F, β = 1.44⋅108 m5/(C2F), ξ = 10−9 SI 

units. Effective distance d = 5 nm, applied bias V = 10 V. 
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4. Effective piezoresponse calculations  

The tensorial object transfer function (OTF) ( )qijklW~  is 
defined as a Fourier-image of the resolution function, 
namely:  

( )

( ) ( ) .,,~,,

~~
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l
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 (12) 

For the dielectrically transversely isotropic 
ferroelectric ( )qijkW~  depends only on the absolute value 

of the wave vector q=q . The rotationally invariant 
OTF is derived as 

( ) ( ) ( ) ( ) 1535131313333333
~~~ dqWdqWdqWqF ++= .(13) 

Using relations (3), Eq. (13) acquires the form: 
( ) ( )(
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)0,(~
3 kP  is the Fourier-image of polarization 

distribution on the surface given by Eq. (8) or (9) at 
z = 0. Eq. (14) is derived for rather prolate domain 
structures (e.g. domains with radius r << l). In the 
adopted effective point charge model of the probe 
electric field, the OTF components ( )qW ij3

~  are [23]: 
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where d is effective charge-surface separation, 

qqq =+ 2
2

2
1 . Here, approximation Eq. (15c) is valid 

for 1<γ , whereas for 1≥γ  the linear term qd~ , which 
caused unphysical pole, should be omitted (as the result, 
the accuracy of Pade approximation decreases). 

Using Eqs. (14), (8) and (2), effective 
piezoresponse ( ) ( ) Vyxuyxd eff ,, 333 =  can be written as: 
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  (16) 

where J0 is the Bessel function of zero order, ( )xd eff
0  is 

the bias-independent PFM profile of the flat 180o-
domain wall calculated in details in Ref. [10]. The bias 
dependence of VPp ~)0,(~ k  is given by Eq. (10). 

Below the probe apex, x = y = 0, let us compare 
piezoresponse (17) calculated within LGD model with 
the expressions obtained within rigid approximation 
(RA) of the atomically-sharp domain walls, proposed in 
Refs. [8, 9, 23]. In the rigid approximation the domain 
shape was regarded as a half ellipsoid with the small and 
large axis equal to r and l, respectively. The 
corresponding effective piezoresponse, measured in the 
vicinity of the spike-like or cylindrical domain can be 
approximated as: 
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    (17) 

Here )(Vr is the domain radius and )(Va  is the 
shift of the probe axes with respect to the domain one, 
whose bias dependence is determined from the minimum 
of the corresponding free energy functional [8, 9]; d is 
the effective charge – surface separation, dielectric 
anisotropy is small, 3311 ε≈ε . Eq. (17) is valid for small 
shifts 2⎮a⎮ < r. The approximate analytical expression 
for the profile ( )00

effd  of an atomically-sharp 180o-

domain wall was found in Ref. [23] as ( ) ≈033
effd  
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where x0 is the domain wall position with respect to the 
probe apex.  

 The effective piezoelectric response vs. applied 
bias calculated from Eq. (16) within LGD approach in 
comparison with rigid approximation (17) is shown in 
Fig. 5 for different distances from the domain wall. 

It is clear from Fig. 5b that Eq. (16) reproduces the 
main features of the ferroelectric hysteresis (and so the 
PFM loops) far from the domain wall (i.e. bistability 
between the state with a single domain wall and the state 
with a nascent domain is possible at dx >~0 ). This is a 
direct consequence of LGD model adopted here (as 
opposed to the rigid ferroelectric model with anomalous 
loop shape). 

5. Summary 

In the paper analytical Landau-Ginzburg-Devonshire 
theory was adopted for description of the domain 
structure formation by using the Scanning Probe 
Microscopy. We calculated effective piezoresponse and 
studied the depth profile of polarization distribution. It 
was shown that depending on the material parameters 
such as intrinsic domain wall width, the shape of 
equilibrium domains, induced by the probe, can be either 
oblate or prolate. The derived analytical expressions are 
valid for both the first and second order ferroelectrics. 
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