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1. Introduction

Interaction of medium with a beam of polarized light can 
be described as transformation of the input Stokes 
parameters into output ones by the Mueller (scattering) 
matrix that contains information related to the 
anisotropic and depolarization properties of the medium. 
Consequently, a detailed interpretation of the Mueller 
matrix elements may be used to characterize the physical 
properties of studied medium [2–4].

In spite of the fact that typically the circular 
birefringence effect is about 103-105 times smaller than 
that for linear birefringence, polarization of radiation is 
affected much more than that expected for this small 
value. The Mueller matrix of circular birefringence is [4]: 
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where   is the value of circular birefringence.

In this paper, we derive the Mueller matrix of the 
circular birefringent crystalline slab with surface 
inhomogeneity and analyze information on medium 
anisotropy and depolarization properties containing in 
the elements of derived matrix using an additive model 
basing on the so-called Cloude coherency matrix [5, 6].

2. Mueller matrix model

As shown earlier [1], the Mueller matrix of elliptically 
birefringent crystalline slab with surface inhomogeneity 
(roughness) in the eigen coordinate system has the 
following form:
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 2exp1 uvuv  , (2e)

 2k  is the wave number; h  is the thickness of a 

crystalline slab; un  and vn  denotes refractive indexes of 

a medium associated with its elliptical eigenpola-
rizations, and d  is the beam radius. 

If to assume that the Mueller matrix Eq. (2) is 
presented in circular eigen coordinate system, i.e. 

ru nn   and lv nn   denotes in this case the refractive 

indexes associated with circular, right and left, 
eigenpolarizations, then this matrix corresponds to a 
matrix model of the medium characterized by circular 
birefringence at least in a given direction of light 
propagation.

If the Mueller matrix in eigencoordinate system, 
eigenM , Eq. (2) is known, then the Mueller matrix in the 

laboratory system, labM , can be found using a well 
known algebra [7] with the corresponding 
transformation matrix associated with circular 
eigenvectors:
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Then, the Mueller matrix in the laboratory 
coordinate system takes the form:
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3. Analysis of the derived matrix model 

Next, we examine our model with the widely used 
crystals: quartz 2SiO  and paratellurite 2TeO  with 

elliptical eigenpolarizations, in a general case. The 
analysis is carried out for exact forward scattering in the 
case when light propagation occurs in the direction 
where both crystals exhibit only circular birefringence.

Comparing the structures of the Mueller matrices 
for a slab of circular birefringent medium without 
inhomogeneity Eq. (1) and for that with inhomogeneity 
Eq. (4), one can see that, because of elements 14m  and 

41m  of the matrix Eq. (4) are generally not equal to zero, 

the presence of inhomogeneity results in occurrence of 
new polarization and depolarization effects.  

3.1. The case of 0h

From Eqs. (2) and (4), setting 0h , we get:
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The Mueller matrix Eq. (5) is a matrix of circular 

birefringence which is equivalent to the matrix Eq. (1). 

Note that when one sets 0h , the matrix Eq. (5) 
becomes identity.

3.2. The case of large inhomogeneities

In [1] it was shown that when inequality 
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is satisfied, then the matrix Eq. (2) contains only four 
non-zero elements, these elements form 22  principal 
minor, and is singular. This is the so-called case of large 
inhomogeneities.

The Mueller matrix in laboratory coordinate system 
Eq. (4) in this case takes the following form:
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Table presents the values of inhomogeneity h  for 

which the inequality Eq. (6) is satisfied and the Mueller 
matrix has the form Eq. (7) for paratellurite 2TeO  and 

quartz 2SiO  crystals. Estimations are derived for the 

wavelength μm63.0 .

The derived estimations show that at the given 
wavelength the case of large inhomogeneity is not 
actually attainable and, thus, in the range of 
inhomogeneity dh   the Mueller matrix of 

inhomogeneous circularly birefringent medium Eq. (2) is 
not singular.

In a general case, from Eq. (4) for the output 
intensity we have:
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Table. Estimations of acceptability of approximations Eq. 
(6) for paratellurite and quarts crystals at the wavelength 
=0.63m.

Crystals rn ln h , m

2TeO 2.2600 2.2594 0.0004

2SiO 1.5427 1.5426 0.0020
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So, the output intensity depends only on the value of 

ellipticity inp  of input polarization. In this case, 
maximum and minimum values of the output intensity are 
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and are achieved at 4inp , respectively.

The degree of polarization of output radiation is
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Then 1min
max p , i.e. the case when output radiation 

is completely polarized, is achieved at 4inp , and 

at 4inp  we have 
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Fig. 1 shows the dependences of minimum values 

of polarization degree for output radiation outpmin  as a 

function of the inhomogeneity h  and wavelength  .

Let us estimate the accessible minimum value of 
outpmin . This value corresponds to the case of large 

inhomogeneity h . Then, using the explicit form 

of the Mueller matrix for this case Eq. (7), we get:
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Thus, outpmin  is determined only by the values of 

refractive indexes for this medium at the given 

wavelength. This means that the value outpmin  cannot be 

equal to zero, because from Eq. (13) in this case lr nn  .

3.3. Cloude’s coherency matrix method

A detailed insight into the polarization and 
depolarization effects of Eq. (4) can be obtained from 
Cloude’s coherency matrix method [5, 6]. For simplicity 
and without losses of generality, we will analyze the 
matrix Eq. (4) in its eigencoordinate system, i.e., the 
matrix of the form Eq. (2). 

Then, in general case Cloude’s coherency matrix 
corresponding to the Mueller matrix Eq. (2) takes the 
form:
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This matrix has the following eigenvalues
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Fig. 1. Dependences of outpmin on the value of inhomogeneity h  and wavelength  : (а) quartz 2SiO ; (b) paratellurite 2TeO .
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The Jones matrices associated with eigenvalues 1ξ  and 

2ξ Eqs. (18) and (19), which correspond to two non-zero 

eigenvalues 1  and 2 , Eqs. (15) and (16), are:

As can be seen, the determinants of Jones matrices 
Eqs. (21) and (22) are in general case neither equal to 
zero nor to unity. For the Jones matrices, this implies the 
presence of dichroism [8], whereas, initial anisotropy of 
studied medium given by Eqs. (1) and (5) is purely 

circular birefringence and   1det CPM .

Thus, the initial Mueller matrix Eq. (4) can be 
represented as a weighted sum of two deterministic 
Mueller matrices corresponding to the Jones matrices 
Eqs. (21) and (22) with weighted multipliers that are 
non-zero eigenvalues of Cloude’s coherency matrix Eqs. 
(15) and (16).

Note that, as it results from Eqs. (15) and (16), in the 
case 0h  we have only one non-zero Cloude’s 

coherency matrix eigenvalue. This corresponds to the case 
of deterministic (non-depolarizing) class of objects. So, 
the appearance of one more non-zero eigenvalue is, hence, 
a result of the appearance of output light depolarization. 

Generating the Mueller matrix Eq. (4) for various 
values of the inhomogeneity h and wavelength  , 
obtaining for each Mueller matrix a corresponding Jones 
matrix 1J  and decompose each Jones matrix 1J  in the 

basis of the matrices of phase and amplitude anisotropy 
[8], we obtain the dependences of the values of circular 
dichroism R  and circular birefringence   on inhomo-

geneity h and wavelength  . These dependences are 
presented in Figs 2 and 3, relatively.
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It can be seen that the values of circular 
birefringence   do not depend on inhomogeneity h, 

and its behavior versus wavelength   is completely 
determined by the values of refractive indexes and their 
variation with changing  .

The fact that, with the exception of R  and  , all other 

types of anisotropy are absent enables to built the 
analytical expressions for the values of circular 
dichroism R  and circular birefringence  . For that, we 

use the so-called second Jones’ equivalence theorem [9], 
according to which the Jones matrix of the medium 
characterized only by circular dichroism and circular 

birefringence, CBDJ , can be obtained in the following 
way:
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Introducing evident representation of the Jones 

matrix associated with the maximum eigenvalue Eq. (21) 
in the form:








 


11

11

ji

ijCBDJ , (2)

and making element wise comparison of the matrices 
Eqs. (23) and (24), for values R  and   we get

4. Conclusion

In summary, we have studied light scattering by 
inhomogeneous circular birefringent media in single 
scattering case. We derive the Mueller matrix model for 
this class of media and show that the resulting Mueller 
matrix for given observation angle implies the presence 
of circular dichroism, whereas, initial anisotropy of 
studied medium is purely circular birefringence. We 
show that for this medium the minimum value of 

polarization degree outpmin  is determined only by the 

values of refractive indexes at a given wavelength. Thus, 

the value outpmin  cannot be equal to zero.
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